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Preface

The advent of the microchip has resulted in the
invention of a product which, ten years ago, was
conpletely unthinkable. This product 1s the personal
conputer and there are now mllions of famlies who own
their own conputer. This book is about one such
machi ne, the Dragon.

The Dragon is a second-generati on personal conputer.
In contrast to early personal machi nes which were slow,
had snall menories and |owresolution nonochrone
disglays, the Dragon offers a fairly large nenory,
hi gh-resol uti on col our graphics, sound synthesis and a
pr of essi onal-qualitel keyboard. There are two versions
of the Dragon available, the Dragon 32 and the Dragon
64, and the nmaterial in this book is relevant to both
of these nachi nes.

Personal conputers are renarkable value for rmneK.
Most of them are nore powerful than machines of the
early 1960's which cost hundreds of thousands of pounds
or dollars. Furt hermore, personal nachines are well -
built and reliable, nmuch nore so than early large
conput ers. However, the weakest aspect of nost
personal nachines is the descriptive docunentation
ﬁrovided with the machine. Wilst this is no real
ardship to those who only use their nachine for gane
ﬁl aying, the hobbyist who w shes to nmake the nost of
is machine has a tough time finding out technical
details of his system

This book is intended for such readers and for those
readers who have explored the BASIC programming
capabilities of their machine and now want to go
further. VW& do not assume any technical know edge of
conputing apart froman ability to wite and understand
BASI C programs. Inevitably, this neans we nust include
some introductory material which can be skipped by
readers with experience in conputing.

Wen this book was witten, the only Dragon
available was the Dragon 32. As a result, the material
here was witten for that nachine but nost of the
exanples are equally relevant to the Dragon 64. Time
has not permtted us to include Dragon 64 details in
the text, but we have provided an appendi x (Appendi x 5)
summarising the differences between the Dragon 32 and
the Dragon 64. Ve have also included an appendix



(Appendi x 8) which covers details of the Dragon's disk
operating system

Many readers wll be aware that the Dragon and the
Tandy Golor Conputer nmake wuse of the same M809
rocessor chip and the same BASI C system devel oped by
crosoft. As a result, much of the naterial here is
also relevant to the Tandy machine and users of that
?yste_m may be able to pick up useful hints and tips
romit.

The book is about the internal workings of the
Dragon rather than about programm ng. W describe the
MB809 processor which is used in the Dragon and show
how machine code prograns for that processor can be
witten in assenbly [anguage. W also describe the
gaphi cs system and the input/output system on the

agon and, finally, we provide bits and pieces of
technical information which may be valuable to the
assenbl y code progranmer.

It is inpossible for us to be conprehensive in our
di scussions of assenbly code programm ng, graphics,or
whatever. Rather, we provide Dragon-specific details
rather than an extensive discussion of (general
techniques. W hope to encourage the reader to delve
further into these application areas and we provide a
reading list which will help you get nore information
about specific techniques.

Printing prograns in a book like this can somnetimes
be wvery wuntidy. Accordingly, we have taken sone
liberties with program comrenting and have used | ower
case letters for comrenting in all of our prograns. W
may also have made sone other minor changes to the
program | ayouts so that they are easier to read but the
actual program code has not been changed.

There are many ﬁeople who have contributed in one
way or another to the ideas and techniques presented in
this book anongst them our coll eagues at the Depart nent
of Conmputer Science, University of Strathclyde. Ve
would also like to express our gratitude to those at
Dragon Data Ltd., in particular to Tony O arke, R chard
Wadnan and Derek WIIians. Permssion to use the
Dragon logo in our exanples was kindly granted by
Dragon Data Ltd.

Finally, special thanks nmust go to our famlies
especially our w ves Pauline Sreed and Anne Sommerville
for their support, encouragenment and tol erance of |ost
gveEi ngs and weekends throughout the witing of this
00K.

lan Sommerville
Duncan Sneed
August 1983



Chapter 1
| ntroducing the Dragon

Every conputer, be it minframe, mniconputer or

mcroconputer, is made up of a very large nunber of
el ectroni ¢ conponents which can be viewed at greater or
| esser levels of detail. At the highest level, the

conputer can be considered as an organised collection
of devi ces nanely:

(1) A processor.
This is the device which actually carries out the
conputations (add, multiply, conpare etc.) on
el enents of data.

(2) A store.
This is the device which is used to store infor-
mation so that it may be readily accessed by the
processor. This information can be transferred
to and from ot her system devi ces.

(3) e or nore peripheral controllers.
Every conputer needs sonme way of getti n% i nf or ma-
tion from and passing information to the outside
world. This is acconplished through peripheral
devices such as floppy disks, printers, Kkey-
boards, video displays, etc. Each of these dev-
ices needs a controller built into the conputer
system to ensure that information is properly
transferred to and from the processor and menory.

(4) A cl ock.
This is not a clock to tell the tine but is real-
ly a pulse generator which ensures that the
operation of all the other devices making up the
system is synchroni sed.

There are various different ways of connecting these
devices together so that they operate as a conputer.
he of the nost comon interconnection techniques,
particularly in mniconputer and m croconputer systens,
Is to connect all the system devices to a comon data
hi ghway. This connection is sonetimes called a bus. A
di agram of such an interconnection is shown in Figure
1.1 where P1, P2, and P3 are peripheral controllers.
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Fig. 1.1 Microcomputer organisation

Notice that the clock has a separate connection to
the other system conponents and that some of the
peri pheral devices are 'one-way' devices. For exanple,

a printer is a wite-only device - you can only
transfer information to it, and a keyboard is a read-
only device - you can only transfer information from

it.

O mcroconputer systens (like the Dragon), the
processor is built onto a single mcrochip as are each
of the peripheral controllers. The menmory is normally
built as a nunber of connected m crochi ps.

These chips are bonded into holders which have a
nunber of pins sticking out of each edge. Sone of
these pins are connections to the data highway and
others are connections to control lines (like the clock
connection). The number of pins on a chip depends on
the type of information which nust be transferred and
the nunber of control signals input and output.
Normally, nore conplex chips, |like mcroprocessor
chi ps, have nore pins than (relatively) sinpl e
peripheral controller chips.

The next level down from the conputer organisation
is sonetimes called the conputer architecture. In the
same way as a buil di n? has an architecture which is an
overall structure tailored to the building s users, so

too does a conputer. In the case of a conputer,
however, the architecture is the structure as seen by
conPut er prograns running on the machine. Just as
building architecture is seen as an organisation of
r oons, corridors, wal | s, etc. r at her than an

organi sation of elenentary conponents such as bricks,
fl oorboards and pipes, conputer architecture is not
concerned with basic electronic logic conponents.
Rather, it is the collection of these conponents into
larger functional units.

The conputer architect is nostly concerned with the
design of the processor and how it can be set up to
transfer information to and from other system
conponents. The most inportant of these is the store.
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Therefore, a major part of the architect's job is to
design the processor so that it makes optinmm use of
the systenmi s nenory.

In this chapter, we introduce basic ideas of how

information is represented in a computer and we
describe, in general ternms, the principles of conmputer
architecture. W then go on to describe the Dragon's

har dwar e organi sation and the chapter concludes with a
description of how the Dragon's nenory is used.

1.1 | NFORMATI ON REPRESENTATI ON

At their nobst fundanmental level, all the components of
a conputer are fabricated out of electronic swtches
which can only be in one of tw states - they can be on
or off. This neans that the ideal way to represent
information in a conputer is as a binary pattern, a
pattern of 1s and 0s. These patterns can represent
nunbers, characters, states of a device, colours, etc.
As long as the interpretation of a pattern is known in
advance, any information can be encoded in binary form

The nobst common use of binary patterns in a conputer
is to represent nunmbers. Binary nunmbers are nunbers
whose base is 2 and digits in a binary nunmber represent
powers of 2. For exanple, the binary nunber

10010111

can be converted to our npre famliar decinal notation
by considering it to be:

| (27) +0(2°%) +0( 2% +1 (2%) +0( 23) +I (2%) +1 (2%) +I (29)

If we carry out these multiplications and additions, we
find that the above binary nunber represents the
deci mal nunber 151. Starting from the right, each
place in a binary number represents an increasing power
of 2. This is a famliar idea which is the basis of
all nodern nunber systens. Deci mal nunbers, nunbers
whose base is 10, are organised so that each place
represents a power of 10. Therefore, the nunmber 3506
can be considered as:

3(10%) + 5(102%) + 0(10%) + 6(10°)

The nunber of distinct nunerals needed to represent any
nunber depends on the base of that nunber system In
general, if the nunmber system base is m m1 distinct
nunerals plus zero are needed. Therefore, for the
deci mal system we need the nunerals 1, 2, 3, 4, 5, 86,
7, 8, 9, 0. For a hexadecimal system whose base is
16, these nust be extended wth extra synbols
representing 10, 11, 12, 13, 14, 15 and the nuneral set
is1l 2, 3, 4, 5 6, 7, 8 9, A B C D E F 0. The



4

bi nary system has a base of 2 so only a single digit,
1, plus 0 is needed in the representation of any binary
number .

Normal arithmetic operations such as subtraction,
addition, nmultiplication, and division can be carried
out on binary nunmbers in exactly the same way as on
deci mal nunbers. The follow ng suns show exanpl es of
bi nary arithnetic.

11001101 10011001
+01101101 -00010111
100111010 10000010

The rules to renmenber are that 1 + 1 is 0 carry 1 and
that 0 - 1 is 1 borrow 1.

The other computations (0+0=0, 1+0=1, 1-1=
0O, 1-0 = 1) are as you wuld expect and have no
associated carry or borrow

Binary arithnetic is tedious and error prone for
humans but, fortunately, is very straightforward for
comput ers. It is relatively easy to build logic
circuits which add binary nunbers and, as we shall see
later in this section, these are all that are required
to inplement all the arithmetic operations of add,
subtract, multiply, and divide.

Normal ly, when we wite down nunbers their length is
unbounded. That is, each nunmber can have as many
digits as we like. The designer of a conputer nenory,
however, doesn't have this flexibility. Conputer nenory
is made up of many distinct cells each of which can
store a fixed nunber of binary digits or  bits.
Normally, each cell stores 8 bits (a byte) and the
nunber of bits used to represent a number nust be a
mul tiple of 8 Combinations of 2 or nore bytes used to
store numbers are usually called a machine word.

The bytes in the conputer's nmenory each have a
uni que address which distinguishes that byte from all
ot hers. Addresses are sinply nunbers which start at
zero and increase by 1 for each byte. Oh a
m croconputer like the Dragon there are 32768 bytes in
user nenory so addresses range from O to 32767. For
conveni ence, menory bytes are divided into blocks of
1024 (called 1K) so we say that the Dragon has 32K or
64K bytes of store.

An anal ogy can be drawn between a conputer's nenory
and the lockers in a sports stadium Each |ocker has a
nunber (its address) which distinguishes it from all
other lockers and items can be stored in the |ocker.
The |ocker nunber doesn't affect what's stored in it
nor does the nmenory address in a conputer. The byte
with address number 23456 can have any number in it.
Just as the Jlockers in a stadium can have names
associated with them as well as nunbers (John Brown's
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| ocker, Mary Jones's locker etc.) so too can menory
byt es. Nanmes are often nore convenient than nunbers
en referring to nenory bytes and we shall see in a
later chapter how this facility can be used.
O nost microconputers, the nunber of bits used to
represent an integer (a nunber without a fraction) is

16, with 32 bits used to r epr esent real
nunbers (nunbers wth fractions). This means that
integers occupy 2 menory bytes and real nunbers occupy
4 nenory bytes. This size limtation restricts the

magni tude of nunbers which can be directly stored and
mani pul ated by the conputer and it is very inportant
that the conputer user bears this in nmnd when using
his machine for nuneric conputations.

However, the restriction on the nunber of digits in
a nunber has a hidden advantage. It allows us to
represent negative nunbers in such a way that the
operation of subtraction can be carried out by adding
the nunbers concerned. This representation of negative
nunbers is called tw's conpl ement representation.

Conpl enent  arithmetic, which depends on nunbers
having a fixed, maxi mum nunber of digits, works wth
nunbers of any base. The nunbers invol ved, however,
nmust have a special binar tag, called a sign bit,
which indicates whether the nunber is positive or
negative. Negative nunbers have a sign bit of 1,
positive nunbers a sign bit of O.

Ve illustrate the principles of conpl enent
arithnetic wusing decimal nunbers rather than cl um;%/
bi nary nunbers but we assume that the naxi num length o
a nunber is 3 digits. That is, we place the
restriction on our nunber systemthat only nunbers from
0O to 999 may be represented. Say we want to carry out
the subtractions 327 - 104 and 96 - 297. These are, of
course, equivalent to the additions 327 + (-104) and 96
+ (-297). The results of these additions are, in the
first case, 223 and in the second -201.

Positive nunbers in conpl ement notation are
represented by the nunber itself wth an associated
sign bit of 0. Therefore, 327 is 0327 and 96 is 0096.
The value of negative nunbers in conpl ement notation is
fornmed according to the follow ng formula:

(maxi mum possi bl e nunber) +l - (absol ut e nunber val ue)
Therefore, where 999 is the maxi num possible nunber,
-104 and -297 have the followng conpl enent
representati ons:

999 + 1 - 104
999 + 1 - 297

1896
1703

Notice that we have added a sign bit (=1) to the left
of the nunber to indicate that it is a negative nunber.
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The subtractions above can now be carried out by adding
the nunmbers in conplenent form In the first case,
0327 + 1896 = 2223. However, because the sign bit is
al ways binary, 2 is actually '10' so we get an answer
of '10'223. Because the length of the nunber s
restricted, we throw away the 1 in the |eftnost
position to get the correct answer 0223.

Simlarly, 96 - 297 is 0096 + 1703 = 1799. This is
a negative number (sign bit =1), so we nust convert it
back to our nore conventional representation using the
same fornmula as was used to convert to conplement form
The conversion therefore is:

-(999 + 1 -799) = -201

Thi s whol e business mght seemto be a bit of a fiddle
with digits being discarded in an apparently arbitrary
fashion and with binary and deci mal nunbers being m xed

up in the sign bit and the nunber itself. However, it
can be mathematically proven that conplement arithnetic
al ways wor ks. The proof isn't relevant here - what is
relevant is that two's conplenent works very well on

computers and that it is very easy to form the two's
conmpl enent of any binary nunber.

To formthe two's conplenent of a binary number, all
the 1 bits are changed to O and all the 0 bits to 1.
This operation is called conplenenting. One is then
added to the number to get the twd's conplenent
representation. For exanpl e, the binary nunbers
01101100 and 00101101 have two's conplenents 10010100
and 11010011 respectively. The leftmpst bit is the
sign bit and operations on it fit in naturally wth
other binary arithmetic.

Notice, however, that the need for a sign bit
reduces the maxi mum and mninum nunbers that can be
represented on a conputer. On a nmachine which uses 16

bits to represent integers, the leftnmost bit nust be
the sign bit so only 15 bits are used for the nunber

representation. This means that the largest positive
integer on such a machine is 32767 and the |argest
negative integer is -32768. It is left as an exercise

for the reader to work out why there is one extra
negati ve nunber.

Normal Iy, mcroprocessors are only equipped wth
hardware units which allow them to add nunbers
t oget her. Subtraction is inmplemented as described
above and nmultiplication and division are inplenmented
in software as sequences of repeated additions for
mul tiplications and subtractions for division.

So far, we have concentrated on the representation
of nunmbers in a conmputer but character processing is at
least as inportant as numeric computation for nost
m croconmputer users. As we said at the beginning of
this section, anything can be represented as a binary
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pattern as long as we know how to interpret it so
characters are normally held in a nenory byte as an 8-
bit binary pattern.

There exist a nunber of different conventions
governing which patterns represent which characters but
the nost commonly used representation on nicroconputers
is the ASAl (standing for Anerican Standard Characters
for Information |Interchange) representation. Under
this system 7 bits are used for char act er
representation and the 8th (leftnmost) bit is always
zero. As well as codes for the upper and |ower case

letters, 'A-'Z, 'a-'z', the digits, '0-'9, and
punctuation characters the ASOIl system also defines
speci al unprintable characters neani ng "end of
transmssion', ‘'ring a bell', 'please acknow edge',

etc. A table of characters and their associated I
values is provided in Appendi x 6.

1.1.1 Hexadeci mal notation

The sequences of 1s and Os which make up binary nunbers
are very awkward for people to use. Because the
nunbers are so long, it is very easy to mss out a
digit or to interchange a 1 and a 0. Naturally, this
changes the value of the nunber and this can conpletely
change the neaning of a conputation.

Ideally, it is best to work in terns of decinal
nunbers and names because these are the types of synbol
that we learn to nanipulate at an early age. However,
it is, unfortunately, sonetimes necessary to talk in
the conputer's terns, that is, in binary. A shorthand
notation for binary nunbers allowing us to wite down
binary equivalents in as few digits as possible reduces
the nunber of errors which we nake. Hexadeci nal
notation is one possible shorthand for binary nunbers.

Hexadeci nal nunbers are nunbers whose base is 16.
This neans that the rightnost hexadecinal (hex for
short) digit represents 0-15, the next digit represents
the nunber of 16s to the power 1, the next the nunber
of 16s to the power 2 and so on. As discussed earlier,
we need 15 digits plus zero for a nunber system whose
base is 16. The hexadecimal digits are:

01 2 3 456 7 9 ABCDEF

The nunber 10 is represented by A° 11 by B, 12 by C 13
by D 14 by E and 15 by F Sone exanples of
hexadeci mal nunbers and their associ ated deci mal val ues
ar e:

9 9
1F 31 (16 + 15)

23 35 (2(16) + 3)

C7 199 (12(16) + 7)

FF 255 (15(16) + 15)

5BE 1470 (5(256) + 11(16) + 14)
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It is very easy to convert from binary nunbers to

hexadeci mal nunbers and vice versa. Hexadeci mal
nunbers represent values from 0O to 15 and this is
exactly 2 to 2 - 1. We need 4 binary digits to make
a hexadeci mal digit so converting from binary to
hexadeci mal involves chopping the binary nunmber into
groups of 4 bits and then witing down the associated
hexadeci mal digit. For exanpl e:

10110111010110111 16EB7Y
1110011011011100 E6DC

Conversion from hexadecimal to binary is equally easy
as long as you nenorise the binary patterns for the
digits fromO0 to F. These are:

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

These patterns can be calculated very easily but after
using binary and hexadeci mal nunbers for a while, you
will find that you have, in fact, nenorised them Sone
exanpl es of hexadecimal binary translations are:

AlC4 1010000111000100
4FFF 010011111111
5670 0101011001110000
As you read through the book, you will see lots nore

exanpl es of hexadecimal nunbers as we always use them
in preference to binary when discussing particular

representations. In particul ar, we al ways use
hexadeci mal nunbers to refer to nenory addresses so
when vyou see an address of 433, say, this is

hexadeci mal 433 which is decimal 1075.

1.1.2 Decimal arithnetic
One of the problens which arise when binary arithmetic
is used in a computer, where 16-bit words are used to
store integer nunmbers, is that the maximum integer
which can be represented is 32767 and the m nimm
integer is -32768. One way round this is to use so-
called 'decimal notation' where nunbers are represented
as a sequence of digits rather than in absolute binary
form

From the table above, it is clear that the
representation of the digits 0-9 requires that 4 bits
be set aside for each digit. Therefore, each nenory
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cell can hold 2 digits. The table bel ow shows exanples
of nunbers represented in both decinmal and binary form

Nunber Bi nary representation Deci mal representation
2 00000010 00000010
55 00110111 01010101
438 000110110110 010000111000
2583 101000010111 0010010110000011

There is a marked difference between the decimal and
the binary representation of a nunber so special
routines are required to perform decimal arithmetic.
Al t hough decimal nunbers take up nmore space than their
bi nary equival ents, they have the advantage that it is
easier to wite special routines to performarithnetic
on large decimal nunbers than it is to wite such
routines for bi nary nunbers whose representation
requires nmore than 16 bits. The Dragon has an in-built
i nstruction, call ed Decimal Adj ust, to help the
progranmer in witing such routines.

Al t hough decimal arithmetic is very inmportant for
comrercial applications prograns, the hobbyist and
scientific conputer user has no real need of it. W
have introduced it here for conpleteness but we do not
use it in this book. Rat her, we assune that al
nunbers may be represented as integers in the range
-32768 to 32767.

1.2 PROCESSOR ARCHI TECTURE

The central device in a mcroconputer system like the
Dragon is the mcroprocessor chip. The processor is
that device which carries out all data transformations.
That is, given input information, the processor can
mani pul ate this and transformit to the output required
by the programmer. The function of a conputer program
be it in BASIC or sonme other programm ng |anguage, is
to define how the processor should transformits input
into the appropriate output.

The processor has an internal structure, its
architecture, which consists of |ower |evel conponents
and their interconnections. As far as the programer

who wants to get the nobst out of his nachine is
concerned, the nost inmportant of these components are
the processor registers.

A register is sinply an electronic device which can

be used to store information. Usual ly, its width (the
nunber of bits it can hold) is wequal to or sone
multiple of the basic nenory cell size. In the

Dragon's processor, register widths are either 8 or 16
bits and they can therefore hold 1 or 2 nenory bytes.

There are two inmportant distinctions between a
register and an ordinary nenory byte or word:
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(D The processor can access information in a regis-
ter nmore quickly than it can access infornation
in amenory cell. The reason for this is partly
due to the way in which registers are constructed
and partly due to the fact that a bus transfer
bet ween processor and nmenory is not required.

(2) Regi sters may be connected, via an internal pro-
cessor bus, to other processor conponents ich
can transform information held in registers or
which can recognise particular data patterns in
the register. These patterns can be used to
trigger corresponding actions by other processor
conponent s. he nost inportant of these com
ponents, which are present in every processor,
are the arithnmetic and logic unit (AL and the
control unit. These are discussed later in this
chapter.

Registers in a processor nmay be classified as either
gener al - pur pose registers or as speci al - pur pose
registers. General -purpose registers may sinply be
thought of as extensions of the conputer's mermr?/.
Nor nal Idy, information which is accessed very frequently
is held in such registers. It is up to the progranmrer
to transfer frequently accesse information to
general - purpose registers before it is accessed and to
save it in nmenory when the register is needed for other
pur poses.

Speci al - purpose registers nmay also be used to store
frequently accessed information. However, instead of
general information, that is, anything the programmer
wants, being stored in such registers particular itens
of information are always held there. QGher types of
speci al -purpose register are accunulator registers and
condition-code registers which are used as ALU input
and output registers.

The notion of an arithnetic and logic unit has
already been introduced. This is a conmponent whose
function is to carry out arithmetic operations such as

add, negate, etc. and logical operations such as
conpare, conplement, etc. he particular operations
available on the Dragon are described in a later
chapter - you don't need to know these details to

understand the general purpose of an ALU.

Accunul ator registers are those registers which nay
act as ALU inputs and outputs. It is not wusual to
connect all registers to the ALU  Rather, only one or
two accumulator registers are directly connected to
this unit and all traffic to and fromthe ALU nust pass
t hrough these accumul at ors.

Wien sonme arithmetic and logical operations take
pl ace, particular conditions resulting from these
operations nust be ' renenber ed' for subsequent
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operations. For exanple, if tw values are conpared
for equality, it nust be renenbered whether they are
equal or not. Simlarly, if an addition produces a
carry, this nust be remenbered. It is the function of
the condition-code register (CCR) to hold this kind of
information for subsequent use by the programmer. The
exact conditions noted in this register differ from
machine to machine - the details of the Dragon's QOCR
are described in the follow ng chapter.

Al though general arithmetic operations nust all take
pl ace through the accunul ator registers in a processor,
It is sometimes possible to perform very linted
addition and subtraction operations in other special-
purpose registers. These operations can take place
automatically before or after the contents of a
register are accessed. Typi cal |y, this auto
i ncrenment/decrenent facility allows 1 or 2 to be added
or subtracted fromthe value in the register. This is
particularly useful when using so called index
addressing where a register contains the address of a
menory location. Indexed addressing is fully described
in the next chapter of this book.

W have already introduced the idea that a conputer
program specifies how pro%am input is transformed to
the appropriate output. iting a program in BASIC
say, is a convenient way for the user to specify this
transformation but, at the processor level, a BASIC
program can't be directly executed.

Rat her, a translation process nust take place where
the BASIC program is converted to a sequence of
primtive machi ne i nstructions. Thi s sequence
specifies the information transfers between the
conputer's menory  and the pr ocessor and t he
Oﬁerat_ions (add, conpare, etc.) to be carried out on
this information.

Wthin the processor, the nmachine instructions
always make use of the processor's registers. Sone
instructions are dedicated to data novenent to and from
menory, sone to arithnetic and |ogical operations, and
sone to controlling the order of execution of the
instruction sequence.

Each instruction has a unique operation code (o,o-
code) which distinguishes that instruction from all
others. This op-code is sinply a binary nunber which
is used by the control wunit in the processor to
determne which operation to carry out. As Dbinary
nunbers (or even hexadecinmal nunbers) are alien to
humans, we normally refer to instructions by nmeans of a
mmenonic related to the function of the Instruction.
Typi cal instruction menonics are:

LD Transfer (LoaD) information into a register
aRr Set a register to zero (CLeaR
INC  Add 1 (INCenment) the contents of a register.
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As well as an op-code, each instruction may have one or
nore address fields which specify the registers and/ or
menory | ocations used by the instruction. These address
fields specify where the instruction can find the data
on which it operates (its operands). They can be
specified in a nunber of different ways (addressing
nodes) and an understanding of these addressi n% nodes
is vital for the programrer who wishes to wite his own
machi ne | anguage prograns. Because, they vary so nuch
from machine to nachine, addressing nodes are not
di scussed further here but those of the Dragon's
processor are covered in the follow ng chapter.

The machine instructions making up a program are
thenselves stored in the conputer's nmenmory and are
fetched, one by one, fromthe nenory to the processor.
Each instruction may occupy one or nore nenory cells -
in the Dragon, for exanple, instructions nay take up 1,
2, 3, 4 or 5 bytes.

The processor control unit fetches instructions from
menory, identifies each instruction and initiates those
conmponents which actually carry out the specified
operati ons. In every processor there is a special-
ﬁurpose register called the program counter (PC) which
olds the menory address of the next instruction to be
executed by the processor.

There is no direct way for the programmer to affect
the operation of the processor's control wunit in its
fetching and decoding of the machine instructions.
However, the address in the PC register can be changed
by the programrer thus allowing himto nodify the order
in which instructions are executed. This facility means
that it is possible to repeat groups of instructions
(loops) and to skip over one or nore instructions if
sonme particular condition holds (conditions). To the
BASIC programmer, the famliar forns of these are FCR
statenents and |F statenents.

1.2.1 Stacks

The nmachine instructions for a particular Program are
nornally held in a linear sequence of cells in the
conputer's nenory. This sequence may be accessed in any
order by nodifying the value of PC so that the
instruction to be executed is the next one fetched by
the processor's control unit.

Sonetines it is also convenient to store and access
data in the sane way. You nay nornal I(}/ access the data
sequentially using a register to hold the address of
the next data item to be selected. By nodifying the
value in this register, you can change this sequenti al
data access pattern and get to any item of data which

you need.
On other occasions, however, it is convenient to
restrict the way in which data is accessed.

Restrictions of this sort are not arbitrary but are a
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safety feature which reduces the chance of the
pr ogr ammer maki ng  m st akes. There are various
different ways in which restrictions can be applied and
the particular technique chosen nust depend on the
aﬁplication bei ng programmed. For a full discussion of
these data structures the reader nust look at the
specialised texts on this topic such as those suggested
in the reading |ist. However, one of these data
structures is so inportant that you nust understand it
if you are to understand the rest of the book. This
structure is the stack.

Arranging data in a stack is a technique of limting
data storage and access so that the last data item
placed on the stack is the only item which may be
renoved from the stack. Ohce this item has been
renoved, we can then get to the itembelow it, renove
it, and so on.

This can be imagined by conparing the data on the
stack to a pile of plates in a restaurant kitchen.
Assune that a dishwasher is adding plates to this pile
after cleaning them and that a waiter is renoving
plates for serving food. The plate which the waiter

takes fromthe pile is always the last plate ﬁut on the
pile by the dishwasher. Like a data stack, the pile of
plates is a last-in, first-out (LIFO structure. Itens

are renmoved in the inverse order to that in which they
are placed on the stack.

Stacks are easily inplenented in a conputer system
by reserving an area of nmenory for the stack and b
associating a special -purpose register called a stac
pointer (SP) with this nenory area. The stack pointer
al ways holds the address of the last itemplaced on the
stack, that is, the top of the stack. Wen an itemis
added to the stack, the SP register is increnented and
the item placed at this address. Wien an item is
renoved from the stack, the item pointed to by SP is
first copied to a register and SP is then decrenented
to point at the new top stack el enent.

In the traditional stack nodel, the base of the
stack is at a low nenory address and the stack grows
upwards so that elenents placed on the stack have
increasing menory addresses. However, this is an
arbitrary convention and it is equally straightforward
to inplement a stack which grows downwards in menory.
This neans that push in element on the stack involves
decrenenting the stack pointer and popping an elenent
fromthe stack involves incrementing the stack pointer.

Stacks in the Dragon are inplenented in this way so
that the base of the stack is at a high nenory address
with stack el ements in successively |ower addresses.

VW shall see in later chapters how stacks can be
extrenely useful to the programrer. They are so
inportant that many processors (including the one built
into the Dragon) provide special instructions to add
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information to and renove information from the stack.
These instructions are:

PUSH This instruction copies one or nore
registers onto the stack and noves
the stack pointer ‘'up’ by the
nunber of register bytes copied.

PULL (or POP) This instruction coples one or nore
itens fromthe stack into registers
and noves the stack pointer 'down
by the nunber of bytes copi ed.

The provision of instructions like these is one of the
features of the Dragon which makes it such a powerful
conput er .

1.3 THE CRGAN SATION OF THE DRACON

VW now nove on from generalities and general principles
of conputer organisation to details of the organisation
of the Dragon itself. Ever%/ m croconputer is Inherently
conpl ex and the Dragon's hardware is nade up of about
20 mcrochips and their interconnections plus a power
suppl y, eripheral device connectors, etc. The usual
way of describing system hardware is by neans of a
bl ock di agram showi ng the various hardware conponents
and their interconnections. Figure 1.2 is such a block
di agram of the Dragon's hardware organi sation.

As we suggested above, the hardware on a
m croconputer system can be considered as being
conposed of three interacting subsystens. These are:

(1) The processor
(2) The menory
(3) The input/output system

The processor built into the Dragon is a single
mcrochip which is designated the 809E or, si Y,
the M6809. This is an advanced 8-bit processor ich
nmeans that its data highways are 8-bits wide but it
also nakes provision for operations on 16-bit data
el enent s. shall not discuss any details of this
system here as both Chapter 2 and Chapter 3 are devoted
to the architecture of the Ms809 processor.

There is no explicit clock component shown in the
bl ock diagram although we explained in the previous
section that the clock was an inherent part of every
conput er system In fact, t he 0X | abel | ed
"Synchronous address multiplexor' is a multi-function
chip which includes a clock and which acts as the
interface between the processor and the random access
nmenory.
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The MB809 processor is designed to operate with data
addresses of 16 bits so the nmaxi num nmenory size which
can be built into the Dragon is nmade up of 2'°® or 65536
bytes. The term 1K is used to nean 1024 bytes so the
maxi num nenory size on the Dragon is 64K bytes. The
Dragon 32 actually has 48K of inbuilt menory with the
capabili:[r% to expand this to 64K using the cartridge
sl ot. e Dragon 64 has 80K of in-built nenory but
only 64K may be in use at any one tine.

In the block diagram of the hardware, the wunits
marked '32K Dynamic RAM and '8K ROM nake up the
nenory of the Dragon. The two ROM (read-only nenory)
units hold the BASIC system and, because this nenory is
read-only, it is inpossible to change any information
stored in these wunits. However , you can read
information stored there and we shall describe |ater
how to nake use of sone of the BASIC systemfacilities
by calling themdirectly from assenbly code.

The dynamc RAM on the Dragon 32 is the user's
nmenory area which is used for the storage of BASIC and
machine code prograns, user data, etc. As the nane
inplies, the Dragon 32 has 32K bytes available for this
purpose whereas the Dragon 64 has twice as nuch
avallable to the wuser. For nmany applications, 32K
bytes is a perfectly adequate amount of nenory but when
conplex disk operating systens are used, you really
need 64K to get the most out of your nachine. The way
in which the use of nmenory is organised is very
i nport ant and we describe the logical nenory
gr anisation of the Dragon 32 in a separate section
el ow

The Dragon's input/output systemcontrollers are the
units labelled PIAO, PlIA1, and VDG These have
associated peripheral interfaces to the keyboard,
di splay, <cassette, etc. The conplexity of the 1/0
system is such that we cannot describe it adequately
here so we have devoted a conplete chapter to the 1/0
system (Chapter 8) later in the book.

1.3.1 Menory organisation

In a system like the Dragon, the nenory is not sinply
considered as a single honmogenous chunk to be used in
sone arbitrary way by the user or the BASIC system
Rat her, decisions have to be nade about which areas of
nenory are to be dedicated to which function and these
decisions have to be clearly communicated to the
sgst em s programrers so that they know how to organi se
their own prograns and data.

The usual way to communicate this information is by
means of a menory map which is sinply a schematic
di agram of how the systemis nenory is used. Like any
map, this can be presented at greater or |esser levels
of detail and the overall nenmory nap of the Dragon 32
is shown as Figure 1.3.



Address
(Decimal)
65535
MPU VECTORS
65522
NUSED (RESERVED
65504 SINIeU A )
SAM CONTROL REGISTER BITS
65472
UNUSED (RESERVED)
65376
INPUT/OUTPUT DEVICES
65280
¥ CARTRIDGE MEMORY ¥
49152
3 BASIC INTERPRETER =
32768
32767
STRING SPACE
32566 -
STACKlSPACE
3 PROGRAM AND VARIABLE STORAGE =
o EXTRA [__
NORMAL
BASIC
PAGE 7 _/
ww2#__-_§£aﬁ____
; J
PROGRAM/
smaL____fﬂ%f,___
MEMORY J VARIABLES
7680 _____fc?(iEf____._
NORMAL ! EXTRA
oy PAGE 4 gt L e o]
GRAPHICS /
BASIC
4608 PAGEEE3 ______________
SCREEN __Y PROGRAM/
3072 N;;::;i / --------------
S VARIABLES B
= PAGE 1
NORMAL TEXT SCREEN
1024
o EXTENDED PAGE — LINE INPUT BUFFER, ETC
- EXTENDED PAGE — CASSETTE BUFFER, ETC
e EXTENDED PAGE — SYSTEM VECTORS, ETC
o DIRECT PAGE — SYSTEM VARIABLES, ETC

Address
{Hex)

FFFF
FFF2
FFEQ
FFCO
FF60

FFOO

7FFF

7F36

3600
3000
2A00
2400
1E00
1800
1200

0Co0

0400
0300
0200
0100
0000
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The 64K bytes of menmory which is potentially avail able
on the Dragon 32 can be |ooked at as being partitioned
into eight distinct areas.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Sést em vari abl es

This is the area of 1K bytes in RAM from address
0000 to address 3FF. It holds various data val ues
and /O buffers used by the BASIC system As
these are in RAM you may nodify variables in
this area but this nust be done with care as in-
cautious nodification can cause the BASIC system
to fail and require that the machi ne be reset.

Text screen

This is the 512 byte area from address 400 to ad-
dress 5FF whose contents are reflected on the
user's display when graphics are not being used.
The use of this area is described in Chapter 7.

Q aphi cs screens

The area of nmenory from address 600 to address
3600 is used by the BASIC graphics systemto im
plenent its graphics conmands. Agai n, we
describe the use of this area in Chapter 7. |If
graphics are not used or, if only limted graph-
ics are used, all or part of this area may be
used for the storage of the user's BASI C program
and its variabl es.

Program and variable store
The area of menory from address 3600 to address
7F36 is used for the storage of the user's BASIC
programand its variabl es.

BASIC string store

Wien character strings are used in a BASIC pro-
gram the string characters are held in a
separate storage area. This area extends from
address 7F36 to the top address in the dynamc
RAM  7FFF.

The BASIC interpreter

The 16K of nenory required by the BASIC inter-
preter is provided as ROMon the Dragon 32 and is
addressed from 8000 to BFFF.

Cartridge menory

Menory addresses from Q000 to FEFF are allocated
to the cartridge slot on the Dragon 32. Wen you
plug in a cartridge, this contains its ow read-
only menmory and this is addressed via these ad-
dresses.
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| nput/ out put area

The Dragon's |1/O systemis a 'nenory-nmapped sys-
tem where reference to specific menory |ocations
cause |/O operations to take place. Therefore,
it is necessary to dedicate some menory |ocations
to input/outgut and, in the Dragon 32, this 1/0O
area is a 256 byte area at the very top of menory
fromaddress FFOO to address FFFF.  Broadly, this
area is partitioned into three secloarate parts.
Addresses FFOO to FF5F are reserved for the use
of peripheral controllers, addresses FFQO to FFDF
are used to control the synchronous address nul -
tiplexor and addresses FFF2 to FFFF are reserved
for interrupt vectors. The other addresses in I/O
area are unused and reserved for future system
expansion. Mre details of the function of these
é/Odedi cated addresses are provided in Chapter



Chapter 2
The architecture of the M6809

The mcroprocessor used in the Dragon has been given
the code nunber M809 by its designers at Mtorola
Sem conductors. The M809 processor devel oped from an
earlier Mtorola mcroprocessor, the M800, and it
shares sone of the features of this earlier system In
fact, one of the design criteria for the Ms809 was that
it should be possible to run prograns witten for the
MB800 on the Ms809 processor.

The MB809 is called an 8-bit processor, indicating
that its data highways are 8 bits wide. This means
that a sinultaneous transfer of 8 bits of information
can be nade from the processor to and from nmenory and
peri pher al controllers. However , the M809 al so
Includes a nunber of instructions which operate on 16
bits rather than 8 bits of data and this considerably
i ncreases the power of the processor.

Such 16-bit instructions provide extra power because
8-bit data manipulation is inadequate in nany cases.
For exanple, consider integer arithnetic. If only 8-bit
representation is allowed this limts the range of
integers to 0-255. This is clearly unacceptable in
nost cases so 16-bit arithnetic operations have to be
simulated on an 8-bit machine by using conbinations of
8-bit instructions. Naturally, this slows down the
execution of prograns.

The provision of many 16-bit operations of the M809
nmeans that prograns can be witten wusing fewer
instructions. Therefore, these prograns execute nore
qui ckly. Because of these extra instructions and
because of the variety of ways in which nenory can be
accessed, the MS809 is sonetines called a second-
generation mcroprocessor or, nore extravagantly, the
programrer' s dream rmachi ne'.

In this chapter and in the following chapter we
describe those aspects of the M809 machine
architecture which are of inportance to the proigrammr
who wishes to wite machine |anguage prograns for his
Dragon. This chapter covers the register organisation
of the MB809, the multitude of ways in which machine
menory nmay be addressed (addressing nodes), and
i ntroduces sone of the nachine instructions avail able
to the M6809 programer. A description of all the M809
machi ne instructions is provided In Chapter 3.

20
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2.1 THE M809 REAQ STER SET

In the previous chapter we introduced the idea of a
register as a fast storage element built into the
processor. The Ms809 has nine such registers, all of
which may be considered as special-purpose registers
rather than general -purpose registers. Figure 2.1 is
the so-called 'prograamamng nodel' of the M809. It
shows, diagrammatically, the M809's registers and
their conparative sizes.

. — - = = e = — e

X — Index Register | )
Y

Index Register
2 > - — } Pointer registers
U — User Stack Pointer |
S — Hardware Stack Pointer )

PC Program counter

A B Accumulators

L ] DI?‘ J Direct page register
7 0
! _E_ ‘F!‘_i | !J_I\'I {_‘VJE | CC — Condition code register
Entire Flag - J ! | | L— Carry
FIRQ Mask — i L overfiow
Half Carry — 1 | | — Zero
IRQ Mask - =b 1 —— Negative

Fig. 2.1 The programming model of the M6809

The names of the M809 registers, their width in
bits, and a very brief description of their functions
are listed bel ow

(1) A register (8 bits) - accurul ator register

(2) B register (8 bits) - accurnul ator register
(3) X register (16 bits) - index register

(4) Y register (16 bits) - index register

(5) U register (16 bits) - stack pointer register
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(6) S register (16 bits) - stack pointer register
(7) DP register (8 bits) - direct page register

(8) PC register (16 bits) - program counter register
(9) CC register (8 bits) - condition code register

The bits in an M8B09 register are nunbered from right
to left starting at 0. This nmeans that bit 0 is the
rightnmost bit and, for 16-bit registers, bit 15 is the
leftmost  bit. Dfferent nachines have different
conventions in this respect. Sone processors nunber
bits from left to right others, like the M809, from
right to left.

2.1.1 The A and B registers
The A and B registers are accunul ator registers which
are used to hold the operands and results of arithmetic
operations. There are a variety of nmachi ne
instructions which mnmake use of these registers and
exanpl es of these are given bel ow

The instruction exanples in this chapter are set out
according to the follow ng general format:

<machi ne code> (rmmenoni c) <operand> (conmrent)

V¢ use dianond brackets <> to nean 'an instance of' so
(rmmenoni c) neans any instruction mmenonic nay repl ace
the character string (mmenonic). W also use the
notation MEM (address)) when referring to particular
addresses in nenmory so MEM AOE4) nmeans the nenory
| ocation whose address, in hexadecimal, is AOE4 and
MEM FRED) nmeans the nenory |ocation whose synbolic
address is FRED. Al nenory addresses are given in
hexadeci mal or are synbolic addresses unless explicitly
stated ot herw se.

The machine code, in hexadecimal, is provided for
each instruction exanple in this chapter. This is the
actual code loaded into the MsB09 nenmory whereas the
instruction menmonic and operand is a form of the
instruction which is nore understandable to the
pr ogr anmer . Most exanples also have a  brief
descriptive comrent explaining the function of that
i nstruction.

Exanpl es of instructions which use the A and B
registers are:

860A LDA #10 ;7 A=10
1E89 EXG A B ; Trp = A A=B B=Tnp
F7F1C5  STB $F1C5 ; MEMF1C5) =B
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5F CLRB ; B=0
8B02 ADDA #2 ; A« A+ 2
FOF1C5 SuBB $F1CG5 ; B = B - MEMF1C5)

The A and B registers are both 8-bit registers which
nmeans that only a limted range of values, fromO to
255, nmay be stored in them For many arithnetic
operations we need to operate on larger or snaller
values than can be represented in 8 bits so the
desi gners of the Ms809 have provided instructions which
allow the register pair AB to be considered as a
single register. Wen the registers are catenated in
this way, they are called the D register.

Effectivel%, the A register nakes up the leftnost 8
bits of the register (bits 8-15). is is sometimnes
called the hi-byte. The B register forns the rightnost
8 bits of D (bits 0-7). This is called the |o-byte.
Many of the machine instructions which operate on
the A and B registers have counterparts which operate

on the D register. However, rather than 8-bit
operations which take place automatically when A and B
are used, the use of the D register or, indeed, any

16-bi t register automatically results in 16-bit
operations taki ng? pl ace. The address in the instruction
refers to the Teftrmost (nost significant) byte when
16-bit operations are specified. For exanple:

CC1000 LDD #4096 ; D = 4096

F31E62 ADDD $1E62 ; D = D + MEM 1E62)

FDO0O56  STD $56 ; MEM56) =

* MEM 56) = hi-byte of D

* MEM 57) = lo-byte of D

VW shall look at nore instructions which operate on the
A B and D registers when we describe the M809
instruction set in detail in Chapter 3.

2.1.2 The X and Y index registers

The X and Y registers in the M809 nay be used as
general -purpose registers to store data but, nore
commonly, they act as special-purpose registers called
i ndex registers.

The information which is normally held in an index
register is the address in nenory of some other data
itemwhich nay represent anything at all, even another
menory address. The M809 as several ways of
accessing nmenory which nakes wuse of these index
registers to determne the address in nenory which is
bei ng used.

Index registers are a particularly efficient way of
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determning data addresses when data itens stored in
consecutive locations are to be accessed and processed
in turn. The X and Y registers in the M809 each have
an associated auto-increnent/decrenment facility which
nmeans that a nmenory location can be accessed and,
without additional 1nstructions, the index registers
can be wupdated to refer to the next item to be
pr ocessed.

This neans that the nost inportant use of the X and
Y index registers is for array processing. The index
register is set up to refer to the first item of the
array and the auto increnent/decrement facility used to
sel ect succeeding itens in turn.

The index registers may also be used as stack
pointer registers if the user needs nore than two
stacks. The U and S registers are provided as stack
ointer registers but the auto increnent/decrenent
acilities of the X and Y registers nmeans that they can
also function efficiently in this role.

Exanples of instructions which use these index
registers are:

AG84 LDA , X © A= MEM X

A680 LDA , X+ D A- MEMX): X=X+ 1

AG82 LDA ,-X © X=X- 1. A= MEMX)

ECA012C LDD 300,Y ; D= MEM300 +Y)

E7A6 STB AY . MMA+Y) =B

There are a nunber of other variants of index
addressing available on the M809. These will be

di scussed later in section 2.2.6.

2.1.3 The U and S stack pointer registers
The U and S registers are 16-bit registers which nay
act as index registers in exactly the same way as the X

and Y registers described above. However, in nany
appl i cati ons, these registers are best used as
speci al - purpose stack pointer registers. Push and pull
instructions are available to the programer i ch

assume that these registers are being used for this
pur pose.

In practical use, the S register is alnost always
used as a stack pointer register referring to the so-
called Sstack or hardware stack. The hardware stack
is used when calling subroutines and when swapping
control from program to program  The state of the
programwhich Is interrupted is saved on this stack and
restored when that program is restarted. This use of
the hardware stack is described later in the book when
interrupt-driven programming is descri bed.
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The U re%_ster nmay be used as a stack pointer to the
so-cal | ed stack or user st ack. However , t he
rogrammer may not need this facility in which case the

register may be used as an index register in exactly
the same way as the X and Y registers.

The M809 stack convention is that stacks grow
downwards in nmenory. That is, when an el enment is pushed
onto the stack, the stack pointer is decrenented before
the push operation so that that element has a |ower
nmenory address than the previous top stack el ement. The
stack pointer registers S and U always point at the top
byte on the stack. In this respect, the MS809 is
different from some other stack-based systens where the
stack pointer refers to the next available location on
t he stack.

Sone exanples of how the U and S registers nay be
used are:

3602 PSHU A ; U=U- 1: MMU =A
3436 PSHS A B, XY ; S=S-1: MEMS)=Y: S =S2
* MEM S)=X. S=S-2: MEM S)=B
* S=S 10 MEMS)=A

3536 PULS A B, XY ; ASMEMS) : S=S+1 : B=MEMS)
* S=S+2: X=MEM S): S=S+2

* Y=MEM S) : S=St+1

3704 PUWU B ; BEMEMU): U=U+1

The push and pull instructions for stack manipul ation
are described in nore detail in Chapter 3.

2.1.4 The DP register
The M809's DP (Drect Page) register is an 8-bit
regi ster which always contains the address of the start

of a 256 byte chunk (page) of mermory. This register is
used exclusively in the so-called direct addressing
node. In this node, the contents of the register are

added to an 8-bit value specified bK the user as part
of the nmachine instruction to formthe effective menory
address. For exanpl e:

96E9 LDA $E9 ; A = MEMDP + E9)
D710 STB $10 ; MEMDP+10) = B

2.1.5 The PC register

The PC register is the Ms809's program counter. It a
16-bit register which always contains the address in
menory of the next machine instruction to be executed
by the M5809.
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2.1.6 The CC register
The OC register is an 8-bit condition code register
where individual bits mark the occurrence of particul ar

condi ti ons. The bits in the register have the

follow ng functions:

Bit O carry bit, set in arithnetic operations

Bit 1 two's conplenent overflow bit

Bit 2 zero bit, set when result of an operation or
data transfer is zero

Bit 3 negative flag, set when result of an
operation or data transfer is less than zero

Bit 4 nornal i nterrupt mask, used by M809
interrupts

Bit 5 half-carry flag, used to indicate a carry
frombit 3 to 4

Bit 6 fast interrupt mask, used by Ms809 interrupts

Bit 7 entire state saved flag, wused by M809

interrupts

The above descriptions of the flags in the GC register
are very sketchy indeed but it is not appropriate to go
into nore detail here of what each flag neans. Rather,
we describe the role of individual condition code flags
along with those mnachine instructions which set and
test these fl ags.

2.2 ADDRESSI NG MCDES ON THE MB809

Ohe of the features of the M809 architecture which
di sti ngui shes t hat m cr opr ocessor from earlier
m croprocessors is the variety of ways in which the
address of a data itemmay be conputed. In all, there
are 19 di sti nct ways of retpr esenti ng an
address (addressing nodes and the lexibility and
ower of these nodes means that sone applications may
e coded very efficiently indeed on the Ms809.

The wuse of the wvarious addressing nodes s
illustrated in Chapters 4 and 5 In this section we
confine ourselves to a description of those nodes and
present exanples of instructions which use these
various nodes.

Before going on to look at addressing nodes in

detail, however, we nust |ook at the structure of a
machine instruction and examne how operand addresses
are represented within instructions. Instructions in

the M6809 may be 1, 2, 3, 4, or 5 bytes long dependi ng
on the particular instruction and on the addressing
?pd?dv\hi ch is being used. Each instruction has two
i el ds:

(L) The op-code (1 or 2 bytes)

(2) The operand address specifier (0, 1, 2 or 3
byt es)
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Notice that, in sone cases, the operand address
specifier nay be enpty, that is, it doesn't explicitly
exist. For exanple, the instruction CLRA clears the A
register - the inherent operand address in this case is
the A register and nay never be anything el se.

Mbst instructions, however, do have an address field
which has the follow ng general structure:

(L) Postbyte (0 or 1 byte)
(2) Value field (0, 1 or 2 bytes)

The address field, called the 'postbyte', is not needed
by all the M809 addressing nodes and it wll be
described along with those addressing nodes which nake
use of it. Sinpler addressing nodes only need the
"value' field to construct an operand address and sone
nodes only require the postbyte field.

2.2.1 Immedi ate addressing

The sinplest addressing nmode on the M809 is the
i medi at e addressi ng node where the instruction operand
is a constant whose value is 'built in" to the nachine
instruction. Wen programm ng, inmmediate addressing is
SEecified by preceding the constant to be included in
the instruction with the synbol # Sone exanples of
i medi at e addressing are:

0580 LDB #128 . B = 128 (decinal)
000400 LDD #1024 ; D = 1024 (decimal)
108EFFO0  LDY #$FFOO ; Y = FFOO (hex)

Notice that a hexadecinmal wvalue is specified by
preceding the imrediate value with a $ sign. The #
synmbol nust also be included to specif i medi ate
addressing as a $ on its own has a conpletely different
nmeani ng.

Al though the instruction operand in imrediate
addressing node nust be an absolute hexadeci nal
constant, this can be generated by the assenbler. Mst
assenblers allow the association of synbolic nanes wth
constants and also allow synbolic |abels representing
addresses. These nay be used as imredi ate operands.

2.2.2 Extended addressing
In the extended addressing node, the contents of the 2
bytes following the instruction op-code are taken as
the absolute address in menory of the instruction
operand. Extended addressing is specified by precedin
a nuneric address (usually 1n hex) wth the synbol
or, alternatively, by witing the synbolic address of
the operand being accessed.

A synbolic address is sinply a nane given to a
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particul ar address location. This idea was introduced
In section 1.1.2 and it is by far the nost convenient
way to refer to actual addresses in the Dragon's
menory. Wen a synbolic address is encountered in an
instruction, the assenbler replaces it with its actual
nuneric menory address. The assenbler also handles the
conversi on of mmenonics to nachi ne code, the conversion
of decimal and hexadeci mal nunbers to binary, etc.

Exanpl es of the M809 extended addressing code are
given below along with their correspondi ng nachi ne code
representations. Assunme that the synbolic nanes CHARL
and PNTR have addresses AO0O0 and AOO8 respectively.

B7A000 STA CHARL ; MEMCHARL) = A
BEAOO8 LDX PNTR ;. X = MEM PNTR)
BB0O3A2  ADDA $03A2 ;. A= A+ MEMO03A2)

2.2.3 Direct addressing

Recall fromour description of the M6809 registers that
the processor has an 8-bit register called the Drect
Page or DP register which always contains the address
of the start of a 256 byte chunk (page) of nenory. This
register is used in the direct addressing node.

In this node, the address of an operand is conputed
by taking the value contained in the instruction
itself (00-FF) and using this as the lo-byte of the
operand address. The hi-byte is taken as the val ue of
the DP register. Direct addressing is used whenever the
address lies in the range 00 to FF since the DP
register nornally contains 00. Direct addressing can
be forced by preceding the address with a '<' synbol in
which case it it is essential that the DP register is
set up with the address of the starting byte of the
nmenory 'page’ being accessed.

Registers are normally assigned values using |oad
instructions but there 1s no load instruction which
assigns a value to the DP register. Rather, some other
8-bit register nust be assigned a value and its
contents then to the DP register wusing a TFR
instruction. For exanple:

8610 LDA #$10 ; A = 10 (hex)

1IF8B TFR ADP ; DP=A

Exanpl es of the use of direct addressing are:
D20  STD $20  ; MEM(1020) = D

9000 SUBA $00 ; A = A - MEM 1000)

The use of direct addressing means that instructions
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are short (nmostly 2 bytes) and this means that prograns

are efficient in both execution speed and in the
storage required for the program There are also
advantages in wusing this npde of addressing when
i mpl enmenting programr ng |anguages |ike Pascal where

gl obal variables may be stored in a page by thensel ves
and accessed via the DP register.

2.2.4 Register addressing

Regi ster addressing is an addressing node where the
instruction operands are always in registers with a
postbyte used to identify the registers involved. There
are only tw instructions which nmake wuse of this
addressing node. These are the transfer register
instruction (TFR) and the exchange register instruction
(EX@ . The address field is sinply a postbyte which is

split into tw parts. Bits 0-3 of the postbyte
identify the destination register and bits 4-7 identify
the source register. The identification value, in

hexadeci mal, for each register is:

0 D register 5 PC register
1 X register 8 A register
2 Y register 9 B register
3 U register A CC register
4 S register B DP register

Using the TFR and EXG instructions, it is only possible
to transfer and exchange registers of like size (8 or
16 bits). Exampl es of instructions using the register
addressi ng node are:

1F12 TFR X Y

1E89 EXG A B ; Tnp =B B=A A=Tm
* where Tnp is some tenporary register
* hi dden from the Ms809 user

2.2.5 Indirect addressing
Sonme kinds of programmng are nade easier if you can
refer indirectly to information which you want to
mani pul ate. That is, you don't include the address of
the instruction operands in the instruction but the
address reference in the instruction is to a |ocation
whi ch hol ds the actual operand address.

Normal ly, the address part of a machine instruction
directly refers to its operand. For exanple:

LDD MAXVAL

| oads the data stored at synbolic address MAXVAL into
register D. Wth indirect addressing, however, the
address part of the machine instruction holds the
address of the address of the instruction operand.
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Address conputation is therefore a two-stage process.
First, conpute the address as specified in the nachine
instruction. Secondly, use this to locate the operand
addrcla?s then use this address to fetch the operand
itself.

This is illustrated in Figure 2. 2.

Instruction

Oper d

Address

Fig. 2.2 Indirect addressing

It is inportant to remenber that the use of indirect
addressing nmeans that the two-stage process described
above always takes place. The effect of an instruction
using indirect addressi ng is exactly the sanme as the
sane instruction using direct addressing inasmich as
the operand value, not its address, is manipulated by
that instruction.

I ndirect addressing can be used with a nunber of the
MB809 addressing nodes but, of the nodes which we have
described so far, it is onl possible with extended
addressing. In this case, and in all other cases where
indirect addressing is allowed, indirect addressing is
specified by surrounding the address part of the
instruction with square brackets. For exanple, say a
value OOE4 is stored at address 32FO0. Fur t her nor e,
assune the synbolic address MAXADD has a val ue of 10A4
and is set up to refer to the value OOEA4. The
i nstruction

CCOF10A4  LDD [ MAXADD]

specifies that the value in MMXADD is actually the
address of the value to be loaded into the D register.
Therefore, the effect of LDD [ woul d be to copy
OOE4 into register D. The actual address reference iIn
the instruction is to address 10A4 which holds the
value 32F0 - the |ocation where OOE4 is stored.

This has illustrated how indirect addressing is used
in conjunction with the extended addressing node but it
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nmay also be used with indexed addressing which is
descri bed bel ow In indexed addressing, where a
postbyte is an inherent part of the address, bit 4 of
the postbyte is used to indicate whether the address
reference is direct or indirect. |If bit 4 is set, the
address is taken as in indirect reference to the
i nstruction operand.

2.2.6 Indexed addressing
V& have al ready described how sone of the registers in
the M8B09 may be used as index registers where the
address is conputed by adding or subtracting some val ue
from the value in the index register. here are a
vari et of different types of indexed addressin
available to the M809 programmer and these are al
described in this section.

The format of an address in an instruction using
i ndexed addressing is:

(L) Postbyte (1 byte)
(2) Cfset (0, 1 or 2 bytes)

The postbyte is set up to indicate which register is
the index register, whether that register 1s to be
automatical ly incremented or decrenented and to specify
the formof the offset to be added to the value in the
i ndex register.

The forns of indexed addressing which we shall
descri be here are:

(1) Zero offset indexed addressing

(2) Constant offset indexed addressing

(3) Accumul ator offset indexed addressing

(4) Auto increnent/decrenment indexed addressing

Before describing these addressing nodes in detail,
however, let us look at the structure of the postbyte
which determnes the actual addressing node used and,
in sone cases, holds the offset which nodifies the
i ndex register val ue.

Bit 7 (the leftnmost bit) of the postbyte specifies
whether an offset is stored as part of the postbyte.
If this bit is unset, bits 0-4 are taken as a 5-hbit
signed offset in two's conplement form  This means
that values between -16 and 15 nay be held as part of
the postbyte and automatically added to the index
register.

If bit 7 of the postbyte is set, this neans that a
5-bit offset is not part of the postbyte and that bits
0-4 have a conpletely different nmeaning. In this case,
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bits 0-3 are used to specify which type of indexed
addressing is to be used and bit 4 is used to select
direct or i ndi rect i ndexed addr essi ng. The
correspondance between addressing nodes and associ ated
values of bits 0-3 is set out in the table bel ow

Bit 4 is the indirect select bit. If it is unset,
this indicates that the computed address is the address
of the instruction operand. If it is set, this means

that the conputed address is to be taken as the address
of the address of the instruction operand.

In all types of indexed addressing, bits 5 and 6 of
the postbyte are used to specify which index register
is being used. Each value of this bit pair specifies a
different index register as foll ows:

X Bit 6=0, Bit 5=0

Y Bit 6=0, Bit 5=1

U Bit 6-1, Bit 5=0

S Bit 6=1, Bit 5=1
VWen bit 7 is 1, bits 0-3 of the postbyte select the
addressing node to be used. The values of these
bits (in hexadeci mal ) and their correspondi ng

addressi ng nodes are shown in the table bel ow

0 Auto increment (+1) The index register is
incremented by 1 after
the address is conput ed.

1 Auto increment (+2) As above, increment is 2.
2 Aut o decrenent (-1) The index register is

decrenented by 1 before
the address is conputed.

3 Auto decrenent (-2 As above, decrement is 2.

4 Zero of f set The address in the index
register is the operand
addr ess.

5 ACCB of f set The address is conputed

by addi ng the contents of
register B to the index
regi ster contents.

6 ACCA of f set As above, but the
contents of register A
are added to the index
register.

7 Not used
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8 8-bit signed offset The value of the byte
following the postbyte is
added to t he i ndex
register to compute the
addr ess.

9 16-bit signed offset As above, but t he
followng 2 bytes are
added to t he i ndex
register.

A Not used

B  ACCD offset The value of accunul ator
D (A:B) is added to the
i ndex register.

C PCrelative, The PC acts as an index
regi ster, with t he
addr ess conput ed by
adding an 8-bit offset to
its val ue.

D PC rel ative, As above with 16-bi t
of fset.

E Not used

F Ext ended i ndirect The following 2 bytes are
the address of the ad-
dress of the instruction

oper and.
We have already covered extended indirect addressing
and addressing using the program counter PC wll be
di scussed in section 2.2.7. Now let us look in nore

detail at the possible indexed addressi ng nodes.

Aut o increnent/decrement indexed addressing
This addressing node allows 1 or 2 to be automatically
added or subtracted from the index register val ue. No
additional add or subtract instruction is necessary to
acconplish this. Wen using auto increment addressing,
the value is added to the index register after the
ef fective address has been conputed. In auto decrenent
node, the value is subtracted from the index register
and the effective address then conputed.

Exanpl es of instructions using this addressing node
are:

A7C0  STA , Ut . MEMU = A U=U=+1
ECAL  LDD ,Y++ . D=MEMY): Y =Y + 2
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ABB2 ADDA |, -X ; X=X-1: A=A+ MEMX)
ABE3 SWBD ,--S ; S=S-2: D=D- MEMYS
Aut o i ncrement / decr enent i ndexed addr essi ng is

ﬂartlcul arly efficient when a nunber of data elenents
ave to be processed in sequence. The index register
is set up to point at the beginning or the end of the
sequence in nenory and, after each elenent is fetched,
the register is increnented or decremented so that it
points at the next element in the sequence.

Zero offset indexed addressing

Wsing this addressing node, the value in the index
register is taken to be the address of the instruction
operand. Nothing is added to or subtracted from it.
For exanpl e:

ABBA  LDA X A—I\/E|\I>é
EDF4  STD [,§ D)

neanl ng | ndi rect addressing

Constant of fset indexed addressing

In this case, a positive or negative constant is added
to the value in the specified index r glster to conpute
the address of the instruction operan The range of
possi ble offsets is from -32768 to 32767 (decimal) and
the assenbler works out whether the offset is to be
stored as part of the postbyte (-16->15), as an 8-hbit
quantity (-128->127) or as a 16-hbit quantlty (-32768-
>32767). If the offset is not stored in the postbyte,
it imediately follows the instruction postbyte in
nmenory.

Although a constant value is added to the index
register value to conpute the operand address, this
nodified value is not stored in the index register.
The addition is purely tenporary and the index register
value is not changed by the use of constant offset

addr essi ng. Exanples of instructions wusing this
addr essi ng node ar e:

ECTA LDD -6, S ; D= MEMS-6).

* Note offset stored in postbyte
* in tw's conpl enent form
ABB816 ADDA 22, X ;. A= A+ MEMX + 22)

* Cfset stored as a 1 byte val ue
AB89012C ADDA 300, X ; A=A+ MEMX + 300)

*

Cffset stored as a 2 byte val ue

Accurmul at or of fset indexed addressing
This addressing node is simlar to constant offset
i ndexed addressing but, rather than the offset being a
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constant, the value of an accumulator register is added
to the index register to conpute the address. The
advantage of this is that the offset can be cal cul ated
and loaded into the accumulator just before it is
required. The programrer need not know the offset in
advance as in constant offset indexed addressing.

Exanpl es of this addressing node are:

E7A6 STBAY MMA+ Y =B
ECB8 LDD DX D= MEMD + X)

2.2.7 Relative addressing

Anot her nmode of address conputation in the M809 is
rel ative addressing where the address of an operand or
of another instruction is conputed by adding an offset
to the program counter register. This offset may be a
positive or negative, 8-bit or 16-bit value. W shall
look first at how instruction operands are accessed
using this addressing mode and then at the relative
addressing of instructions thenselves.

Rel ative addressing of instruction operands makes
use of the postbyte in the same way as does indexed
addr essi ng. If bits 0-3 of the postbyte are C or D

while bit 7 is set this specifies that the addressing
is PCrelative. For exanple:

AEBCO08 LDX 8, PCR ; X = MEMPCR + 8)

DD8D0400 STD 1024, PCR ; MEMPCR + 1024) - D

A very inportant advantage of using PC relative
addressing is that it sinplifies the witing of
position independent code. Posi tion independent code
is code which works in exactly the same way

irrespective of where that code is placed in nenory.
Such code nust nmake extensive use of relative and
i ndexed addressing because extended addressing neans
that the instruction operands nust always be at the
address 'built in" to the code.

Wth position dependent code, you nmust always |oad
the program into exactly the same menory |ocations as

were used previously. Thi s is not necessarily
convenient or even possible so it is good progranm ng
practice to wite all prograns in a position-

i ndependent way.
Rel ati ve addressing of the instructions in a program

is acconpl i shed by nmeans of so-call ed ' branch
instructions'. The effect of these branch instructions
is to nodify the program counter register. Thus the
next instruction executed is not necessarily the

instruction followng the branch instruction but sonme
other instruction whose address is conputed by adding
the specified offset to the value of PC. The relative
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addressing of instructions is different from the
relati ve addressing of operands inasnmuch as the value
stored in PC is nodified whereas in operand addressing
the value of PCis used but is unchanged by the address
conput at i on.

The conputation of relative instruction offsets is a
tedious and error-prone task. Usual ly, it is left to
the assenbler to work out the appropriate value to be
added to PC. You may mark instructions with a name (a
label) and use this nane as part of the branch
instruction. The assenbler knows the nunber of bytes
occupied by each instruction so it can work out the
aﬁpropriate offset to allow a transfer of control to
the labelled instruction.

This can be illustrated by a short assenbly code
sequence which is equivalent to the following BASIC
stat enent:

IF VL > MAX THEN MAX = WL

Assune that VL and MAX are 16-bit quantities held at
addresses AD00 and A002 respectively. The assenbly
code equivalent to the above BASIC conditional is:

FCA000 LDD VL . D= MEM L)
10B3A002 CMPD MAX ; Conpare D with MEM MAX)
2F03 BLE NEXT : If VL<=MAX goto NEXT

FDAOO2 STD MAX MEM MAX) = D
NEXT .

The branch instruction in the above sequence, BLE,
nodifies the value of PCif and only if VL is less than
or equal to MAX Notice that the value in the PC
nodi fication field is 3, the nunber of bytes in the SID
instruction. It is not the nunber of bytes in the BLE
instruction plus the nunber of bytes in the SID
i nstruction. The reason for this is the PC always
points to the next instruction in the instruction
sequence rather than the instruction which is being
execut ed.

There are many branch instructions available to the
MB809 pr ogr anmmer . They are discussed in detail in
section 3.5 of the follow ng chapter.

2.3 MEMCRY- MAPPED | NPUT/ QUTPUT

VW have seen, in Chapter 1, t hat a conputer
organi sation includes a nunber of units which are set
up as peripheral control devices to allow infornation
to be transferred to and from the processor and nenory
units. Qoviously, the processor nust have access to
these controllers in order to initiate data transfers
to and from the outside world. In this section we
describe, in very general terns how this is done.
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However, as it is such an inportant topic we devote a
conplete chapter to details of input and output |ater
in the book.

Recall, fromFigure 1.2, that the M809 processor,
nmenory and peripheral controllers all have access to a
common data highway or bus. O MB809- based systens
such as the Dragon, this bus is 24 bits wide. This
means 24 bits of information can be sinultaneously
transferred from device to device. C these 24 bits,
16 bits are reserved for the data address and 8 bhits
are used to transfer the data itself.

In the sane way as all mnenory locations have a
uni que address, so too nust input/output (I/O devices
connected to this shared bus. Cn sone systens, the bus
has an extra line indicating that the address on the
bus is a peripheral rather than a nenory address but
this is not the case on M809 systens. Rat her, the
addresses of [/O devices have exactly the same form as
menory addresses with specific addresses reserved for
these |/O devices. These nenory addresses may not be
used for straightforward data storage as they are
al located to particular 1/0O devices.

This is not a severe handicap as there are usually
only a few I/O devices on any system On the Dragon,
there are 256 nmenory bytes reserved for use by the 1/0
system These are at the top end of nermory between
FFOO and FFFF. If we access one of these addresses
which is allocated to an 1/O device, the effect of the
access is to initiate a data transfer to or from that
peripheral unit. The synchronous address multiplexor
exam nes addresses on the bus and detects those which
refer to 1/O controllers. The data is then routed to
these devices for input or output.

This type of 1/0O organisation where peripherals are
associated with specific nenory addresses is called,
for obvious reasons, nenory-napped 1/Q It is a
conceptual ly elegant way of carrying out input and
output as there is no need for specific instructions to
initiate peripherals and all instructions which
reference nenory nay be used to access the systemis 1/0
devices. Full details of the Dragon's 1/O system are
provided in Chapter 8 and in the appendi ces.



Chapter 3
The M6809 Iinstruction set

In Chapter 2 we described the general features of the
MB809 architecture and introduced, wthout a great deal
of explanation, sonme of its machine instructions. A
t horough know edge of the nachine instruction set is
vital for the nmachine code programmer so this chapter
is conpletely dedicated to a description of the M09
instruction set.

At this point, we nust enphasise the distinction
between machine instructions and assenbly |anguage
menoni cs. Machine instructions are the actual binary
op-codes executed by the processor as it runs a
program Assenbl y Ian%uage instructions are the
menoni cs and nanes used by the programmer to synbolise
these nachine instructions because It is nuch easier
for us to think in synbols and names rather than
nunbers.

There is not necessarily a one-to-one correspondence
between machine instructions and assenbly anguage
i nstructions. For exanple, on the MB809 there are
over 1400 distinct nachine instructions when we take
into account all the different conbinations of op-code
and postbyte that are permtted. Fortunately, however,
there are only 59 distinct instruction menonics which
nust be remenbered by the assenbly |anguage programer
along with the register names and the synbolism
associated with the different M809 addressing nodes.
Conbi nations of these allow all possible machine
instructions to be represented.

The reason for the enornous discrepancy between the
nunbers  of assenbly language and nachine code
i nstructions is t hat nmany assenbl y | anguage
instructions have variants for each of the nachine
registers and for each addressing node allowed wth
t hat i nstructi on. For exanpl e, the instruction
specifying that a register is to be loaded with an
i medi ate value has the form

LD<regi ster> <val ue>

This is all that need be renmenbered by the assenbly
| anguage programmer. However, there are seven distinct
machine | anguage op-codes associated wth this
instruction, one for each register that may be directly

38
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| oaded. The assenbly code mmenonics for these are LDA,
LDB, LDD, LDX, LDY, LDU, and LDS. These have
associ ated op-codes of 86, C6, CC, 8E, 108E, CE, and
10CE

Al of these load instruction mmenonics have a
di fferent op-code associated wth each pernmitted
addr essi ng node. For exanple, if imrediate addressing
is used with an LDA instruction the op-code is 86. | f

direct addressing is used, the op-code is 96, for
i ndexed addressing the op-code is A6 and for extended

addressing B6. Instructions which load the other
registers also have distinct op-codes  for each
addressing mode so, in all, the LD instruction nmenonic
has 28 distinct machine instructions which nay be
derived fromit. If we consider postbytes to be part of

the instruction, this gives many nore machi ne |anguage
derivations from an assenbly |anguage |oad instruction.
It is practically inmpossible to program directly in
machi ne | anguage because of the enornous nunber of op-
codes that rmust be renenbered by the programrer

Nor mal | vy, an assenbler is wused to carry out the
tedious task of translating mmenonics to op-codes,
wor ki ng out relative of fsets and constructing
postbytes. At worst, if an assenbler is not avail able,

the programmer should wite his program in assenbly
code as if an assenmbler is at hand and then translate
manual ly to nmachine code. Attenpting to program
directly in machi ne code i nevitably | eads to
frustration, boredom and many errors.

A conplete table of assenbly |anguage mmenonics and
their associated machine op-codes is provided in
Appendi x 1. It must be enphasised, however, that hand
translation from assenmbly code to machine code is not
recomrended for anything apart from very short
prograns.

The instructions available to the M809 progranmer

can be considered under seven distinct headings. These
are:
(1) Data novement instructions

Instructions which transfer information to and
from regi sters and nmenory.

(2) Arithmetic instructions

Instructions used to inplenent arithnetic opera-
tions such as add and subtract.

(3) Logic instructions
Instructions wused to execute logic operations
such as or and shift.

(4) Test instructions
Instructions which set flags in the condition
code register depending on operand val ues.
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(5) Branch instructions
Instructions which affect the normal sequential
flow of control in a program by nodifying the

val ue of PC.

(6) Interrupt handling instructions
Instructions used to handle so-called interrupts
which usually arise from peripheral devices in
the system Interrupts are described in Chapter
8.

(7) M scel | aneous instructions
Any other instructions which don't fit under the
above headi ngs.

Many data novenent, arithmeti c, logic and test
instructions have the effect of setting or unsetting
particular bits in the condition code (CC) register. In
particular, if the result of executing an instruction
is zero, the zero (Z) flag in CC is always set. If the
result is negative, the negative (N) flag in CC is
al ways set.

Arithmetic, logic and test instructions may also
change the value of the carry (C flag, the half-
carry (H flag and the overflow (V) flag in the
condition code register. Sone of these are described
later in this chapter under the appropriate headings.
This description is not conmplete - full details of how
instructions affect CC flags are provided in Appendix
1.

In the follow ng description of the M809 assenbly
code instructions, it is sonetinmes necessary to refer
to particular CC flags. W wuse a dot notation,
CC.<flag letter> to nmake these references. Thus CC N
is the negative flag, CCV is the overflow flag, etc.
VWen we say a flag is set this means that its value is
1, when unset the flag value is zero.

In the remminder of this section and in subsequent
chapters, we sonetinmes use BASIC statenents to explain
the meani ng of assenbly |anguage instructions. W have
done this informally until now but, from now on, we
will use the follow ng conventions.

(1) Regi sters are indicated by BASIC variables with
the same name as the register. Therefore, the
nanes of the registers are A, B, D X Y, U S
DP, CC, and PC.

(2) The use of some other BASIC nane refers to the
location in menory which has that synbolic name.
Therefore an assenbly code instruction, LDD XVAL,
m ght be commented with the BASIC statenent, D =
XVAL.
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(3) Wien an absolute address in nenmory is referenced,
we consider nenmory as a one-dinensional array
called MEM and use the absolute address as an ar-
ray index. Therefore, MEM AO34) refers to the
nmenory | ocation whose address, in hexadecinmal, is
A034. W also use the same notation when refer-
ring to an indexed address. The register nane
plus or mnus any offset is stated as an index
into MM Thus, MEMX +10) means the nmenory | o-
cation whose address is conputed b?/ adding 10 to
the contents of register X In al cases, con-
stant values used as indices to MEM are hexade-
cinmal constants.

perations using a 16-bit register result in 2 bytes
being loaded or stored from nmenory whereas 8-hit
register operations result in a single byte being
| oaded or stored. V¢ do not explicitly distinguish
between 1 and 2 byte nenory operations in the comments
acconpanyi ng the assenbly code exanpl es.

The exanples provided are intended to illustrate the
assenbly code instructions so no nachine code
equi valents are given in this chapter.

3.1 DATA MOVEMENT | NSTRUCTI ONS

The function of data novenent instructions in the M809
is to transfer information, wthout change, from
register to register, fromregister to nmenory, and from
menory to register. In all cases, apart fromthe EXG
regi ster exchange instruction, and sone instances of
the LEA, load effective address instruction, the data
nmovenent is inplenented as a copy operation. That is,
imedi ately after the data novenment instruction has
been executed, the source operand and the destination
operand as specified in the instruction have the sane
val ue. The value of the source operand is not destroyed
by the execution of the instruction.

Data novenent instructions have the followng form
<op- code mmenoni c><regi ster specifier> <pararmreter>

The instruction paraneter nay take different forns
depending on the particular data novenment instruction.
These wll be described along wth the individual
i nstructi ons.

There are a total of 7 types of data novenent
i nstructions:

(1) Load instructions
Instructions which nove data from menory to a
register.
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(2) Store instructions
Instructions which nmove data from a register to
Menory.

(3) Transfer instructions
Instructions which nove data from one register to
anot her.

(4) Exchange instructions
Instructions which exchange the contents of one
register with another.

(5) Load effective address instructions
Instructions which conpute an operand address and
load it into an index register.

(6) Push instructions
Instructions which push register values onto a
st ack.

(7) Pul | instructions

Instructions which pull values stored on a stack
into registers.

3.1.1 Load instructions
Load instructions in the M809 are used to load data
values into a register from nenory or as immediate
operands from the instruction itself. The general form
of these instructions is:

LD<r egi ster> <address or imedi ate operand>

Registers A, B, Db S, U X and Y nmay be used in |oad
i nstructions. If the instruction specifies a 16-bit
register (Db U S, X T), the effect of the |Ioad
instruction is to nove the addressed nenory byte into
the hi-byte of the register and to load the follow ng
menory byte (address + 1) into the lo-byte. That is, 2
menory bytes or a 16-bit inmrediate operand is nmoved
into the register. If an 8-bit register is specified,
the addressed byte or 8-bit inmediate operand is noved
into the register.

Four classes of addressing node are allowed wth

load instructions. These are imediate addressing,
direct addressing, i ndexed addressing and extended
addr essi ng. Dependi ng on the addressing node used and
on t he particul ar i nstruction op- code, | oad
instructions are 2, 3, 4, or 5 bytes in length.

Some examples of load instructions, in assenbly
code, are:

LDA #10 ; A =10
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LDD MAXVAL  ; D = MAXVAL
LDS 10, X . S = MEMX + 10)
LDB $50 . B = MEMDPR + 50)

3.1.2 Store instructions

Store i nstructi ons are the converse of | oad
i nstructions. They are used to transfer infornation
fromthe machine registers to nenory. The general form
of store instructions is:

ST<regi ster> <address>

As with load instructions, the allowed registers are A
B D X Y, Uand S. The use of a 16-bit regi ster nane
results in 2 bytes being noved from the register to
menmory, an 8-bit name results in a single byte being
noved.

Allowed addressing nodes are direct addressing,
i ndexed addressing, and extended addressing. For
obvi ous reasons, immediate addressing is not meani ngf ul
in store instructions.

Sone assenbly code exanples of store instructions
are:

STA | . MEMI) = A
STX ,Y ; MEMY) =X
STD $30 ; MEMDP + 30) = D

Like load instructions, store instructions can have
I engths between 2 and 5 bytes depending on the op-code
and addressi ng node used.

3.1.3 Transfer instructions

Transfer instructions nove the contents of one register
to another. Any registers nay be specified as long as
they are of like size, that is, both operands nmust be
either 16-bit registers or 8-bit registers. The
menonic for a transfer instruction is TFR and the only
ermtted addressing node is register addressing.
ransfer instructions are always 2 bytes in |ength.

Exanpl es of transfer instructions are:

TFR ADPR ; DPR=A
TFR X Y Y =X
3.1.4 Exchange instructions
The exchange instruction, whose mmenonic is EXG is

simlar to the transfer instruction described above.
However, rather than the value of the source register
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being copied to the destination register, the values of
the source and destination register are swapped.
Again, register addressing is the only addressing

node which may be used with exchange instructions. For
exanpl e:

EXG A, DPR ; Temp = A* A = DPR DPR = Tenp

EXG S, U ; Temp = U U=S S = Tenp

3.1.5 Load effective address instructions

The purpose of the load effective address instructions
is to set up one of the index registers (S, U X, Y) to
hold the absolute address of an operand in nenory.
Because address conputations in the Ms809 can be fairly
conpl ex, and hence tinme consuming, it 1is sonetimes
useful to carry out this conputation once only and then
use this conmputed value in subsequent instructions.

Load effective address instructions have the form

LEA<i ndex register> <address>

The specified address nust be an indexed address. LEA
instructions are either 2, 3, or 4 bytes |ong depending
on the particular type of indexed addressing which is
used. Exanples of these instructions are

LEAS 10, X ;7 S =X+ 10
LEAX D X ; X =D+ X

It is clear from the BASIC representations of the
instruction functions that, in nmany cases, the LEA
operation involves an addition to an index register.
This means that a subsidiary use of this operation is
to allow addition and subtraction operations on the
index registers without requiring that their contents

be transferred to the accumulator register. For
exanpl e:

LEAS 10, S ; §S=S + 10

LEAX -20, X ; X=X - 20

The above operations can, of course, be acconplished
using the accunul ator registers:

TFR SD ; D=S
ADDD 10 ; D=D+ 10
TFR D, S ;7 S =D
However, the single LEA instruction executes nore

quickly and takes up fewer nmenory bytes than these
i nstructi on sequences.
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3.1.6 Push instructions

The function of push instructions is to copy the
contents of one or nore registers onto a stack in
nmenory whose top is addressed by the U or the S
register. Push instructions have the form

PSH<U or S <register list>

The PSH can nove the contents of up to 8 registers (CC
A B DPR X Y, Sor U PC onto the nenmory stack.

Push instructions have a postbyte indicating which
registers have actually to be pushed onto the stack.
Individual registers are indicated by bits in the
post byte as foll ows:

Bit O aC
Bit 1 A
Bit 2 B
Bit 3 DPR
Bit 4 X
Bit 5 Y
Bit 6 Sor U
Bit 7 PC

Push instructions are always 2 bytes in length. Some
exanpl es are:

PSHS A B ;. Push A and B onto the S stack

PSHU A B Y, X PC OCCDPR ; Push all registers apart
fromU onto the user stack

The order in which the user specifies the registers in
the push instruction is not necessarily the order in
which they are pushed onto the stack. Registers are
al ways pushed onto the stack in the follow ng order:

PC, US, Y, X DPR B, A CC

If all registers are pushed, GC is on top of the stack,
A is the second top location, B is the third top
location and so on. If only a subset of the registers
are pushed onto the stack, the order above is
mai ntai ned al though, obviously, only the specified
registers are actually stacked.

For exanple, after executing the instruction PSHU
A X, B, the top of the stack is a copy of register A
the second top is a copy of register B and the third
top is a copy of register X although this was not the

order specified in the instruction. In general, this
automatic ordering of stacked registers saves the user
having to care about stacking order. If, however, a

particular stacking order is required this nust be
achieved by using separate push instructions for each
register.
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3.1.7 Pull instructions

Pul | i nstructions are t he converse of push
i nstructions. They move information from stacks in
menory to specified registers. The form of pull

instructions is:
PUL<S or U> <register list>

Pul | i nstructions, like push instructions, use a
postbyte to specify which registers are to be pulled
from the stack. Sone exanples of pull instructions,
which are always 2 bytes long, are:

PULS A B ; Copy the top 2 locations of the
* hardware(S) stack to A and B.
* Adjust the stack pointer accordingly
PULU A B, DPR, PC, X, Y, S, CC ; Copy values of all
registers from the
user stack

The order in which register values are pulled from the
stack is again independent of the order in which they
are specified in the instruction. Therefore, CCis the
first register pulled, A the next register, B the third
regi ster and so on.

3.2 ARI THVETI C | NSTRUCTI ONS

The arithnetic instructions available on the M809
operate on the accunulator registers and, in sone
cases, directly on nenmory locations. In all cases when
an instruction operates on a register one of its
operands is the value of that register and the result
of the operation is placed in that register. Therefore,
after an arithnmetic operation on a register the
previous contents of that register are destroyed.

There are twelve arithmetic operations available to
the Ms809 programrer which we shall consider in seven
groups:

(1) Add instructions

(2) Subtract instructions

(3) Clear instructions

(4) The nmultiply instruction
(5) Negat e instructions

(6) The sign extend instruction

(7) The deci mal adjust instruction
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As a side effect of executing nmost of these arithnetic
instructions, flags in the condition code register are
set. Particular settings are described under the
appropriate headi ng bel ow

3.2.1 Add instructions
There are four kinds of add instruction provided on the
M6809. These have the forns:

ABX X=X+B

ADC<A or B> Add nenory to Aor Bwth CCC
ADD<A, B, or D> Add nenory location to accumul ator
INC<A or B> Add 1 to register or nmenory |ocation
The ABX instruction is the sinplest add instruction.
This instruction takes the contents of B to be an
unsigned 8-bit value (0-255) and adds it to X leaving
the result in X The condition code flags are not

affected. This instruction is simlar in effect to the
i nstruction LEAX B, X but there are i npor t ant

di stinctions. Firstly, the value of B in an LEA
instruction is taken as an 8-bit twod's conpl enent
nunber so may take a value between -128 and 127. The

value of B In an ABX instruction can range between 0O
and  255. Secondl vy, ABX is a 1-byte inherent
address (this neans that the instruction operands are
always the sane) so it is shorter than the
corresponding LEA instruction. The provision of this
instruction allows certain kinds of |ndexed addressing
to be inplemented in a very efficient way.

~ The add with carry or ADC instruction operates on
ei ther accunulator A (ADCA) or accunmulator B (ADCB).
This instruction adds the contents of the register plus

the carry bit OCC to the specified nenory [location
leaving the result in the register. ‘he nenory
location may be addressed using direct, indexed or

extended addressing or may be an 1 nmredi ate val ue.

ADC instructions are used when rmultiple-byte
arithmetic is inplemented where it is necessary to take
a carry from a previous arithmetic operation into
account. The ADC instruction affects the C N V, Z
and H bits of CC

Exanpl es of ADC instructions are:

ADCA #35 : A=A+ CCC+ 35
ADCB , X . B=B+ CCC+ MEMX)
Add instructions operate on registers A, B, and D and

their function is to add an immediate operand or a
menory location to one of these registers. Like ADC



48

instructions, the C N V, Z and H bits in the
condition <code register are affected by an AD
i nstruction.

Exanpl es of add instructions are:

ADDA SVAL ; A=A+ MEMSVAL)

ADDB #5 ; B=B+5

ADDD ,--Y ;Y

Y-2: D=D+ MMY)

The INC instructions are special purpose  add
instructions which are used to add one to the single
byte accunulators A and B or to a specified nenory
location. Athough this operation can be inplenented
in other ways, the 'add 1 to something' operation is so
coomon that it is worth providing it as a separate
nmachi ne instruction.

The instructions INCA and INB are 1-byte
instructions with no address field whereas the nenory
increment instruction INC may use direct, indexed or
ext ended addressing. For exanpl e:

| NCA A=A+ 1
| NCB - B=B+ 1
INC FRED ; MEMFRED) = MEM FRED) + 1

The INC operation affects the N Z and V bits of the
condition code register.

3.2.2 Subtract instructions

There are three types of subtract instruction available
to the M6809 programrer which are the converse of ADG
ADD and INC. These are the instructions SBC (subtract
with carry), SUB (subtract), and DEC (decrenent by 1).

The function of these instructions is to subtract an
i medi ate operand or the value of a nenory |ocation
froma register, leaving the result in that register.
The operands for this operation must be in tw's
conpl enent form

Al the subtract operations set the overflow flag
QCV if the result is too small to be held in the
sPecified register or nmenmory |ocation. They al so
affect the Nand Z flags in GC and the instructions SB
and SUBC set the carry flag in the event of a borrow
occurring in the last place of a subtraction.

The SBC instructions operate on registers A and B
and subtract OCC.C as well as an imed ate value or a
menory location value from the specified register. For
exanpl e:

SBCA J . A= A- MMJ) - CC.C
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SBB 4Y ; B=B- MM4 +Y) - CC.C

The subtract instruction SUB operates on registers A
B, or DO For exanpl e:

SUBA #4 C A=A- 4
SUBB $30 . B=B- MM 30)
SUBD PONTER ; D= D - MEM PO NTER)

The decrenent instruction, DEC, subtracts 1 froman 8-
bit value held in either A/ B or a nenory |ocation.
For exanpl e:

DECA C A=A- 1
DECB . B=B- 1
DEC CVAL ; MEMCVAL) = MEMCVAL) - 1

3.2.3 Qear instructions
The function of clear instructions (CLR) is to set
register A or B or a 1-byte nenory location to zero,
that is, to clear it of i1ts previous value. The CRA
and the CLRB instructions are 1-byte instructions wth
no address field whereas the QR instruction may use
direct, indexed or extended addressing.

Exanpl es of clear instructions are:

CLRA . A=0
CLRB . B=0
ARAX : MMA+ X =0

3.2.4 The multiply instruction

O nost 8-bit microprocessors multiply instructions do
not exist. MJIti]pI ication is inplenented by a software
routi ne which pertrorns a sequence of repeated additions
to multiply two nunbers. he reason for this is that
multiplication is a relatively conplex operation whose
result is always twice as long as its operands. To
include this in an 8-bit architecture increases the
conplexity of that architecture as provision nust be
nmade for a 16-bit result.

The inplementation of mltiplication by repeated
addition obviously nakes it a relatively slow process
conpared to addition and subtraction. Furthernore, it
is a fairly comon operation when accessing el ements of
two-di mensional arrays or matrices. As the MB809 is a
hybrid m croprocessor whose architecture includes 8-bit
and 16-bit features, the designers of that chip have
included a limted form of multiply instruction. The
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mul tiply instruction, which has the OE-code MJL, is a
1-byte instruction which takes the contents of
accurmulators A and B as its operands and |eaves the
result of the multiplication in accumulator DD As Dis
a catenation of A and B, the original operands are
dest r oyed.

The ML instruction takes the values in A and B to
be unsigned 8-bit values rather than two's conpl enent
nunbers. The reason for this is that the use of
unsigned mltiplication makes it easier for the
rogranmmer to wite rmulti-byte multiplication routines
oo multiplication and that the array elenent
conputation referred to above generally wuses only
positive array indexes.

An exanple of a multiply instruction is:
ML ; D=A*B

3.2.5 Negate instructions

Negate instructions operate on 8-bit two's conplenent
values held in register A register B or in nenory.
They are witten as NEGA, NEGB, or NEG <address>. NEGA
and NEGB negate the contents of registers A and B
respectively whereas NEG may use direct, extended or
i ndexed addr essi ng.

Exanpl es of negate instructions are:

NEGA . A= -A
NEGB . B=-B
NEG SVAL ; MEM SVAL) = - MEM SVAL)

3.2.6 The sign extend instruction

The sign extend instruction, SEX, is a 1-byte
i nstruction whose function is to convert an 8-bit two's
conpl enment nunber held in accumulator B into a 16-bit
two's conpl ement nunber in accumulator D In essence,
it takes the sign bit of B and extends it so that it
becones the sign bit of D The value of the hi-byte
of Dis set up to be the same as the sign bit of B
This neans that if the nunber is positive, sign bit =
0, accumulator A is cleared. If the nunber Iin B is
negati ve, accurmulator Ais filled with 1s.

3.2.7 The decinmal adjust instruction
The decimal adjust instruction is used when decinal
arithnetic, described in section 1.1.4, is used on the
M6809. The use of decimal arithmetic entails holding
two 4-bit digits in an 8-bit register rather than an
8-bit binary nunber.

Wien an add operation is performed on such a val ue,
a binary addition takes place so that the nunbers held
in eac of the 4-bit register fields need not
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necessarily be correct. For exanple, say the nunbers
27 and 53 are added. Wen represented in 4-bit decimal
notati on these have binary values 00100111 and 01010011
respectively. Wen a binary addition is performed, the
result is 01111010 which cannot be represented as
decimal as the first digit is 7 and the second is
hexadecimal A Clearly, the result of the addition
should be 80 which in binary formis 10000000.

The decimal adjust instruction exanines register P.

and also the carry bits CC.H and CC.C. It checksto
see if an incorrect decimal value is stored in that
register. If so, it adjusts the decimal digits so that
the correct value is restored. In the above exanple,

it would check bits 0-3 of the nunber, see that they
were an inpossible deciml nunber and would convert
this to the correct nunmber by adding 6 to it. Thi s
results in a carry into bits 4-7 thus increasing the
deci mal value stored there to 8.  The correct nunber is
then represented in the register.

The need for the half-carry bit CC.H now becomes

cl ear. If bits 0-3 of the decimal nunbers are such
that an addition generates a value which cannot be
stored in 4-bits, the half-carry bit is set. The

deci mal adjust instruction recognises this and adjusts
the decimal digits accordingly.

3.3 LOGI C | NSTRUCTI ONS

Like the M809's arithnmetic instructions, the logic
instructions are alnmost exclusively concerned wth
operations on the A and B registers and with individual
menory  bytes. The two exceptions to this art
instructions which operate on the condition code
regi ster and which provide a generalised mechanism for
setting and wunsetting individual flag bits in that
register.

Logic operations nmanipulate the individual bits in
their operands and |ook upon these operands as sinple
groups of bits (bitstrings) rather than as nuneric
val ues. For the reader who is unfamliar with logic
operati ons we describe the actual operation as well a:
the instruction format along with each class of logic
i nstruction.

Logic instructions may be |ooked upon as falling
into one of five classes:

(1) And instructions
(2) O instructions
(3) Compl ement (not) instructions

(4) Shift instructions
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(5) Rotate instructions

| ndi vi dual i nstructions are descri bed under t he
appropri ate headi ng bel ow.

3.3.1 And instructions

The | ogical and operation takes 2 bits as its operands
and returns a value of 1 if, and only if, both of its
operands are 1. Al possible operands and results for
this operation are therefore:

0O ANDO -> 0
1 ANDO -> 0
0O AND1 ->0
1 AND1 ->1

The M6809's and instructions operate on 8-bit data so
therefore repeat the above operation for all 8-bits in
the operand register. The registers A, B, and CC nmay
take part in and operations.

The instructions ANDA and ANDB perform a |ogical and
on the contents of the named register and a byte in
menory or an imrediate operand. Direct, indexed or
ext ended addressing may be used to reference a menory
byt e.

The ANDCC operation, on the other hand, may only use
i medi ate addressing. Its function is to and the CC
register with the imediate byte provided l|eaving the
result in CC

Exanpl es of and instructions are:

ANDA #$FO ; Ands A wth (hex) FO.
* Note that the effect of this is
* to clear bits 0-3 in A
and to leave bits 4-7 unchanged

ANDB MASK ; Ands B with MEM MASK)

ANDCC #$00 ; Ands CC with (hex) 00
* This clears CC
The reader will have gathered from these exanples that
one of the nost important functions of the and

operations is to clear specific bits in a register
whilst leaving the other bits unchanged. Anding a O
with a 1 bit always clears it whereas anding a 1 wth
either a 1 or a 0 always |eaves that val ue unchanged.

3.3.2 O instructions
There are two types of or instructions provided on the
M6809. These are so-called inclusive or and exclusive
or which have mmenonics OR and EOR respectively.

These operations can be defined by their effect on
bit val ues:
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0O0CRO->0 0 ECRO -> 0
1RO ->1 1 ECRO -> 1
OCR1 ->1 O ECR 1 -> 1
1R1->1 1 ECR1 ->0

Li ke the and instructions, or instructions are provided
which operate on registers A B, and CC However,
there is no EORCC instruction - only EORA and EORB are
available to the programrer.

Exanpl es of OR and ECR instructions are:

ORA #$0F ; O (hex) OF with register A
Note the effect of this is to
set bits 0-3 of A whilst |eaving
bits 4-7 unchanged

EORB , X ; Exclusive or B with MEM X)
ORCC #$03 ; O (hex) 03 with CC thus setting
* bits 0 and 1 in that register

Just as and instructions can be used to clear specific
bits in a register, or instructions nay be used to set
specific bits. Oing with a 1 bit always sets the
corresponding register bit whereas oring with a 0
al ways | eaves that bit unchanged.

3.3.3 Conpl enent instructions
Compl ement instructions sinply switch the bits in a
register or nenmory byte. That is, all 1 bits are set to
0 and all O bits are set to 1. For exanple, if B holds
the bitstring 10010011, executing a COVB instruction
results in the bitstring 01101100 being stored in B.
Single byte instructions are available to conpl ement
registers A and B as is a nenory conplenent instruction
which may use direct, indexed or extended addressing.
An alternative name which is sonetines used for the
conpl enent operation is the 'not' operation.
Exanpl es of complenent instructions are:

COVA ; Conpl enent register A
COM B, X ; Compl enent MEM B + X)

The conplement operation is not the same as the NEG
arithmetic operation. The NEG operation forns the two's
compl enent of a nunber whereas the COM operation forms
the so-called one's conplenent val ue.

3.3.4 shift instructions

The purpose of shift instructions is to nove all the
bits in a register along one place to the left or to
the right with the leftmost or rightnost bit 'falling
off the end" and being discarded. For exanple, if a
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register holds the binary value 10110001 and is shifted
|eft, the resultant value is 01100010. If a right
shift is executed, the resultant value is 01011000.
Notice that Os are filled in on the left when a right
shift is executed and on the right when a left shift
takes place. The M809' s shift i1nstructions fall into
two cl asses:

(2) Arithmetic shift instructions

Arithmetic shift instructions consider bit 7 of
the register being shifted to be the sign bit.
This bit does not take part in arithnetic shift
right instructions and its value is preserved.
The bit is shifted during arithmetic shift
left (ASL) instructions. For exanple, if a re-
gister value is 10010011 and an ASL instruction
using that register is executed, the resultant
value is 00100110. However, with ASR bits 0-6 are
shifted with the sign bit propagated into the
lower bits. The resulting value I1s 11001001.

(2) Logi cal shift instructions

Logical shift instructions do not recognise the
sign bit and their operands are shifted to the
left or to the right as described in the intro-
duction to this section. Logi cal shifts have
nmenoni cs LSL (I ogi cal shift left) and
LSR (logical shift right). Notice that the LSL
and the ASL instructions are equivalent.

The arithmetic and logical shift instructions operate
on the A and B registers and on nenory bytes accessed
using direct, indexed or extended addressing. Shi ft
instructions always affect the carry bit OC C whose
val ue becones that of the bit which 1s shifted out of
the register.

Exanpl es of shift instructions are:

ASLA ; Shift Aleft by 1 bit with
* QC.Cset to the value of bit 7
* of A before the shift

ASRB ; Shift Bright by 1 bit with
* CC.Cset to the value of bit 0O
* of B before the shift

LSL SVAL ; MEMSVAL) is shifted left by
* 1 bit with OC.C set accordingly

LSR -16,U ; MEMU-16) is shifted right by 1 bit
with CC C set accordingly

*

3.3.5 Rotate instructions
Rotate instructions are simlar to logical shift
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instructions. The only difference is that the val ue of
the carry bit OCC rather than a 0 is nmoved to the
leftmost or rightrmost place of the register, depending
on whether a rotate right or rotate left instruction is
execut ed.

The menonics for rotate right and rotate left
instructions are RR and RO respectively and they
operate on the A or B registers or on a menory byte. As
usual, direct, indexed or extended addressing ray be
used to refer to this byte in nmenory.

Exanpl es of rotate instructions are:

RCRA ; Ais shifted right by 1 bit with
* bit 7 becoming CC.C and CC C taking
* the value of bit 0 before the shift
RCL SVAL I\/EI\/%SVAL) is shifted left by 1 bit
* with bit 0 becomng CC.C and CC C set
* to the original value of bit 7.

3.4  TEST | NSTRUCTI ONS

The M6809's test instructions allow the programrer to
determne if certain conditions are true or false. The
execution of a test instruction always causes one or
nore bits in the OC register to be set or unset
depending on the result of the test. Thus CC bit
settings are the neans by which test results are
‘renenpbered’ for use by follow ng instructions.

There are three kinds of test instructions:

(L) Bit test instructions
(2) Byte test instructions
(3) Conpare instructions

Bit test instructions only operate on registers A and B
and byte test instructions on A B and nenory bytes.
Conmpare instructions, however, are available for all
i ndex and accumul ator registers.

3.4.1 Bit test instructions

The bit test instructions BITA and BITB are used to
test if particular bits (0-7) in register Aor Bare 1
or 0. The operand of the bit test instruction is a
single byte called a nmask whose val ue determ nes which
bits in the specified register are to be tested.

In order to test bit n in the register, the nask is
set up so that only its nth bit is 1 with all other
mask bits set to 0. Therefore, to test bit 4, the nask
value should be 10 (hex) and to test bit 6, it should
be 40 (hex).

If the bits being tested are set, the effect of the
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bit test instruction is to unset the zero flag (Z-fl ag)
in the CC register. Recall that this flag is always
set when the result of an operation is zero and unset
when the result is non-zero. Bit test is inplenented
as an and operation but w thout the anded value being
stored in the specified register. Therefore, if a
tested bit is 1, CC.Z is 0 and if a tested bit is O,
CC.zZz is 1.

Exanpl es of bit test instructions are:

Bl TA #$80 ; Tests bit 7 of A
* CC.Z = not A7

Bl TB MASK ; Tests the bits of register B
* accordi ng to MEM MASK)

3.4.2 Byte test instructions
Byte test instructions are used to test if a byte in
menmory, register A or register B is positive, negative

or zero. The mmenonic for these instructions is TST
with, as usual, A or B appended to it if registers are
t est ed. If a nenory byte is being tested it may be
addressed using direct, indexed or extended addressing.

Byt e t est i nstructions are i mpl enent ed by
subtracting O from the contents of the byte being
t est ed. The result of this subtraction causes the

negative flag and the zero flag in the CC register to
be set or unset. W have already discussed how the Z-
flag is set if the result of the previous operation is
zero so, if the tested byte is zero, CC.Z is set and
CC.N is unset.

If the byte tested is positive, both CC.Z and CC N
are unset, whereas if it is negative CC.Z is 0 and CC.N
is 1. In all cases the byte test instruction causes
the overflow bit CC.V to be unset.

Exanpl es of byte test instructions are:

TSTA ; Test register A
TST 16, X ; Test MEM 16 + X)

3.4.3 Compare instructions

Compare instructions allow registers A, B, D, X Y, S
and U to be conpared with one or two bytes in menmory or
with an imediate operand. Al l owed addressing nodes
are direct, i ndexed and extended addressing. The
mmenoni ¢ for conpare instructions is CMP followed by
the name of the particular register wused in the
conpari son.

Like byte test instructions, conmpare instructions
are inplemented as a subtraction with no permanent
effect on the instruction operands. The addressed 8-
bit or 16-bit quantity is subtracted from the register
contents and the carry, overflow, zero and negative
bits in the condition code are set accordingly.
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If the value in nenory is less than the register
value, the result of the conparison is positive so CC.N
is unset. If it is greater than the negative val ue,
the result is negative so CCN is set, and if the
values are equal, the result of the subtraction is zero
so CC.Z is set.

Exanpl es of conpare instructions are:

CWPX [ MAXADD] ; Conpare X with MEM MEM MAXADD) )

CVMPB #10 ; Conpare B with (decimal) 10

CwPD 16, U ; Conmpare D with MEM 16 + U)
Compare instructions are nostly used inmediately before
branch instructions to inplenment |oops, conditions,
etc. The progranmer need not explicitly be aware of

which bits in CC are set or wunset by the conpare
instruction when they are used in this way.

3.5 BRANCH | NSTRUCTI ONS

The M6809's branch instructions are provided to give
the programrer control over the flow of execution of
his program They allow single bits or conbinations of
bits in the condition code register to be tested and,
on the basis of these tests, add or subtract some val ue

from the PC register. This PC nodification results in
a break in the normal sequential execution of nachine
instructions and transfers control to sone other

i nstruction.

Branch instructions may be considered under four
headi ngs:

(1) Uncondi ti onal branch instructions
These always cause a transfer of control ir-
respective of the bit settings in the CC regis-
ter.

(2) Simpl e conditional branch instructions
These test a single bit in the CC register with a
control transfer dependent on its val ue.

(3) Signed conditional branch instructions
These are used if, in the previous test, signed
regi ster contents were conpared with signed con-
tents of nmenory. They test one or nore bits in
CC with control transfers dependent on their
val ues.

(4) Unsi gned conditional branch instructions

These are simlar to signed conditional branch
instructions but are used when unsigned values
were conpared in a previous operation.
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Al'l branch instructions use PC relative addressing with
the value to be added to PC held as an 8-bit or 16-bit

i nstruction operand. Because the operand may be 1 or
two bytes, there are 2 forns of every branch
instruction, a short form and a long form Short

branch instructions have the form

B<condition> <1 byte 2's conpl erent di spl acenent >
Long branch instructions have the form

LB<condition> <two byte 2's conpl enent di spl acement >

In the description and exanples below, it is convenient
for us to show only the short form of the branch
instructions. However, the reader should bear in mnd
that long branch fornms are also allowed. The act ual
machi ne code value for the long branch form of a branch
instruction is usually mde up by prefixing the
correspondi ng short branch op- code with
10 (hexadecimal). Long branch instructions are used
when the displacenment in the branch instruction is |ess
than -128 or greater than 127.

3.5.1 Unconditional branch instructions

There are t hree di stinct uncondi ti onal branch
instructions available to the M;809 progranmer. These
are:

BRA Branch al ways
BRN Branch never
BSR Branch to subroutine

The BRA instruction is equivalent to a BASIC GOIO
statenent and the BSR instruction to a BASIC GOSUB
st at ement . These instructions al ways add their

di spl acement to PC irrespective of the settings of CC
flags. In addition, the BSR instruction, before
nodi fying PC, stacks that register on the hardware
stack referenced by the S register. This means that,

on return from the subroutine, execution can be resuned
at the instruction which follows the BSR instruction.

The BRN i nstruction is a so-cal l ed no- op
i nstruction. In short it does nothing at all except
take up 2 or 4 bytes of space. Wen this instruction
is executed, control i mediately nmoves on to the
following instruction. This may, therefore, appear to
be a useless instruction. However, it has its uses

when the progranmer wishes to cheat a little and hide a
1 or 2 byte instruction in the operand field of the BRN

i nstruction. After the first execution of BRN when
this instruction is ignored, it is possible to branch
back to the hidden instruction and execute it. Thi s,
however, is poor programing practice and is not a

reconmended techni que.
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3.5.2 Sinple conditional branch instructions
Sinple conditional branch instructions examne a single
bi t in the M809's condition code register.
Instructions exist which branch on the setting of the
carry flag, the overflow flag, the negative flag, and
the zero flag. There are two instructions which test
each fl ag. e of these instructions branches if the
flag is set, the other branches if the flag is unset.
The table below lists the sinple conditional branch
instructions and shows their association wth condition
code fl ags.

Fl ag Mhenoni ¢ Functi on
C ECS Branch if carry bit is set
BCC Branch if carry bit is unset (clear)
Vv BVS Branch if overflow bit is set
BVC Branch if overflow bit is clear
Z BNE Branch if zero bit is unset

that is, when conparison operands
are not equal

BEQ Branch is zero bit is set
that is, when conparison operands
are equal
N BM Branch is negative bit is set
BPL Branch if negative bit is unset

As with all other branch instructions, these may take
an 8-bit or 16-bit signed two's conpl ement offset thus
allowing forward or backward branching. |If a 16-bit
offset is used, the mmenonics above nust be prefixed
with an L to indicate |long branching.

3.5.3 Signed conditional branch instructions

Signed conditional branch instructions are used when a
precedi ng operation has conpared the val ues of signed,
nuneri c operands. These branch instructions exam ne
conbi nations of condition code flags to determne if
the specified condition is true or false and if
branchi ng shoul d occur.

The table below shows the four distinct si'\gned
conditional branch instructions available to the 809
pr ogr anmer . In addition to these, the sinple
conditional branch instructions BEQ and BNE may al so be
used as signed conditional branches, where the branch
takes place if the operands in the precedi ng conparison
were equal or not equal.

Fl ag combi nati on Mhenoni ¢ Functi on
NOT(Z OR (N XOR V)) BGT Branch if greater than
NOT(N XOR V) BGE Branch if greater than

or equal
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Z R (NXRV) BLE Branch if less than
(N XCR V) BLT Branch if less than
or equal

Notice that the pairs of conditions above are
compl ementary with the greater than conditions the
inverse of the less than conditions. BLE is the
compl ement of BGT and BGE is the conplement of BLT. W
therefore only explain the flag conbinations for a
single pair of instructions BLE and BLT.

The BLE instruction branches if, in the preceding
conmparison, the register operand was |ess than or equal
to the nmenory operand. If register A was tested
agai nst MEM VAL) say, we might wite this as A <= VAL.
If the operands are equal, the Z-flag in CC is set.
This flag is examined by BLE and branching occurs if it
is set.

If A and MEM VAL) have the same sign, t he
subtraction operation entailed in the comnparison can

never result in overflow so CCV is always cleared. |If
A is indeed less than MEM VAL), the subtraction wll
result in a negative value so CC.N wll be set.
Therefore, if CCN is set and CCV unset, this
indicates that A is less than MEM VAL) and branching
will occur. If CCV is unset and CC.N is unset, A is

not |ess than MEM VAL).
In the case where A and MEM VAL) have different

si gns, the conparison my result in an overflow
occurring. Thus the sign bit wll have an incorrect
value. If CCV is set, indicating overflow, and CC.N is
unset, indicating a non-negative value, this actually

means that the result is negative. On the other hand,
if both CC N and CCV are set, the result is positive.
Because of the neanings of these bit conbinations,
the exclusive or operation perforned on CC. N and CC V
al ways gives the correct sign bit for the nunber.

Therefore, if this operation returns 1, the result of
the conparison is negative and branching should take
pl ace.

The BLT instruction can be considered as a less
general form of the BLE instruction which only branches
when the register operand is less than the nenory
operand. The above argunent holds for this instruction
al so. The BGI and the BGE instructions are sinply the
compl enents of these so a not operation perfornmed on
the corresponding 'less than' <condition bits allows
these instructions to determine if branching should
t ake pl ace.

3.5.4 Unsigned conditional branch instructions

Unsigned conditional branch instructions are used when
the preceding operation conpares the val ues of unsigned
oper ands. Again, these instructions test condition
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code register flag conmbinations to determne if
branchi ng shoul d take pl ace.

The table bel ow shows the four unsigned conditional
branch instructions and the flags tested in the CC
register. Again, the BEQ and BNE instructions may be
used under this category.

Flag conbi nation Mhenoni ¢ Functi on

C BLO Branch if | ower
CRZ BLS Branch if |ower or

the sane
NOT( ©) BHS Branch if higher or

the sane
NOT(C CR 2) BH Branch if higher
Again the instruction pairs BLOBHS and BLS/BH are
compl ementary so we shall only discuss the operations
BLO and BLS. As these operations assume that the
previous conparison tested unsigned operands, t he
negative flag CC.N is not tested by these instructions.
As always, if the result of the conparison is zero,

CC.Z is set so the BLS instruction branches if this
flag is 1.

As the conparison operands are unsigned, t he
subtraction entailed in the conparison is essentially a
subtraction of positive values. |If the second operand
is greater than the first, the subtraction will result
in a borrow. Thus, the carry bit in CC will be set.
If the second operand (the nenory operand) is smaller
than the first, no borrow will result so the carry bit
will be unset. Therefore, the BLO and BLS instructions
exam ne the carry bit and branch if it is set.

So far, we have not provided any explicit exanples
of branch instructions as, unlike other instructions
consi dered so far, exanples of these instructions are
meani ngl ess in isolation. To illustrate sone of the
branch instructions in use we show below the assenbly
code equival ent to a nunber of BASIC statenments
i nvol ving | oops and conditional operations.

100 IF V1 > V2 THEN GOTO 500

200 IF V1 = V2 THEN GOTO 700

300 V1 = V1 + 2

400 GOTO 200

500 M= V1

600 GOTO 800

650 REM ASSUME A SUBROUTI NE EXI STS AT 2000
700 GOSUB 2000

800

Assuming V1, V2 and M are represented as 16-bit signed
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guantities and that the subroutine at 2000 has the
synmbolic nane V1EQ an assenbly code sequence which
woul d carry out the sanme function is:

LDD Vi ; D=V1
CVMPLAB CVWPD V2 ; Conpare this with V2
BGTI GTLAB ; If greater than branch
BEQ EQLAB ; |If equal branch.
Notice there is no need for
another load or conparison
ADDD #2 ; Add 2 to D
STD V1 ; and put result back into V1
BRA CMPLAB ; Branch back to conmparison
GTLAB STD M ;7 VI > V2 so M= V1
BRA NXTLAB ; continue
EQLAB BSR V1EQ ; Val ues equal, call routine

NXTLAB

Notice how the assenbly code version of the sequence is
only slightly longer than the BASIC Wi | st in
general, BASIC statements expand into multiple assenbly
code instructions it is often possible to elimnate
much of the redundancy inherent in high |evel |anguage
progranm ng and hence produce conpact code.

3.6 | NTERRUPT HANDLI NG | NSTRUCTI ONS

An interrupt is a neans by which a program executing
on a processor, can be tenporarily suspended whil st
some other program executes. They are of vita
i mportance in 1/0O progranm ng where interrupts are used
by peripheral devices to informthe processor that data
are available. The processor nust stop what it is
doi ng, collect the data from the peripheral then
restart its original activity.

The interrupt handling instructions available to the
M6809 programmer are described in full in Chapter 8
whi ch covers 1/0O programm ng. Here, we sinply list the
interrupt handling instructions which are avail able and
sunmari se their functions.

(1) The wait instruction

This instruction, menponic CWAI, takes a single
byte operand which is anded with the contents of
CC when the instruction is executed. The E flag
in the condition code register is then set, indi-
cating that all registers should be stacked on
the hardware stack. The instruction then waits
(does nothing) until a hardware interrupt occurs.
Interrupt processing, as detailed in Chapter 8,
then commences.

(2) The return from interrupt instruction
The return from interrupt instruction, RTI, is
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executed after interrupt processing is conplete.
It unstacks the register values pertaining when
the interrupt occurred thus returning control to
the interrupted process.

(3) The software interrupt instruction

This instruction, which has menonic SW, causes
a so-called software interrupt. A software in-
terrupt causes the processor to junp to an asso-
ciated interrupt service routine which may, for
exanpl e, transfer control to some other process
Thus the execution of progranms in different parts
of the M6809' s nmenory may be coordinated and syn-
chroni sed.

(4) The synchronise instruction
This instruction, SYNC, is used to synchronise an
executing program with some external hardware
event .

Interrupt handling instructions are special purpose
instructions and are unnecessary for nost applications
programmed in assenbly code.

3.7 M SCELLANEQUS | NSTRUCTI ONS

In this section, we describe the remaining M809
machi ne instructions which don't fit neatly into any of
the above classifications. There are only four
instructions in this category. These are:

(L) The junp instruction

(2) The junp to subroutine instruction

(3) The return from subroutine instruction
(4 The no operation instruction

V¢ shall start with the 'no operation' instruction
which has menonic NOP. Its function is very easy to
describe - it does nothing. A NOP instruction is 1
byte long and all it does is take up nmenory space. This
can be wuseful if it is necessary to force other
instructions to occupy particular nenory |ocations.

3.7.1 Junp instructions

The junp instructions available to the Ms809 progranmrer
are simlar to the branch instructions discussed
earlier in this chapter. The function of these
instructions is to evaluate their operand and load its
value into the programcounter register. Therefore, if
addresses of other instructions are saved as data, you
can transfer control to these instructions using a junp
i nstruction.
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The addressing nodes allowed with junp instructions
are direct, indexed and extended addressing. There are
two junp instructions JMP, which is an unconditional
j unp, and JSR  which is a junp to subroutine
Instruction. The only difference is that JSR stacks the
program counter PC on the hardware stack before
assigning its operand to the PC register.

Exanpl es of junp instructions are:

JWWBU ; PC= MMB + U
JSR,U ; S=S- 2 MEMS =PC PC= MMV

3.7.2 The return instruction

The return from subroutine instruction, whose menonic
is RIS, is executed as the last instruction in a
subrouti ne. It unstacks the top two bytes from the
hardware stack and assigns them to PC Thi s
effectively transfers control to the instruction
following the BSR or JSR instruction which initiated
the subroutine.



Chapter 4

Introducing assembly
language

Assenbly |anguage progranming is a form of conmputer
programri ng where the programer wites his program as
a sequence of absolute directives to the processor.
That is, he states exactly which machine instructions
are to be used in the exenption of his program

This type of programming is sonetimes called |ow
| evel programm ng because it is a notation which is

very close indeed to machine |anguage. By contrast,
programming in a language such as BASIC is called
hi gh-1evel |anguage programr ng. The progranmer wites

his program at a rmuch higher level where the details of
the machine architecture are irrelevant.
Hi gh-1evel programrng is much easier than |owl evel

progranm ng because machi ne architectures are
i nherently conpl ex. The | owl evel programer  nust
master all the details of this conplexity if he is to
avoid meking progranming errors. The  high-1evel

programrer, on the other hand, has many fewer details
to renenmber and can concentrate on getting the |ogic of

his program correct - a difficult enough task in
itself.

The mjority of conputer applications can be
pr ogr amed perfectly adequatel y in a high-level
| anguage and there is no point in progranmng in
assenbly |anguage when BASIC wll do. However, in
personal conputers, |like the Dragon, there are some

tasks which are easier to program in assenbly |anguage
rather than BASIC because they require access to
hardware features of the machine. Although this is
possible from BASIC, it is clunsy and inconvenient as
it requires the use of many POKE and PEEK instructions.

There are also some types of program which, if
programmed in BASIC, are too slow This sl owness
results from the way in which BASIC is inplenmented.
Every BASIC statenent nust be translated to nachine

code just before it is executed and this takes a
significant anmount of tine. As this translation is
absolutely essential, the only way to speed these

programs up is to program them or, at least those
time-critical parts of them in assenbly code.

As we have already suggested, the real difference
bet ween programi ng in assenbl y | anguage and
programming in BASIC is one of detail. In BASIC,

65
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deci si ons about where the program and its data are to
be located in memory, how real nunbers are to be
provi ded, how character strings are nanipul ated, etc.
are all nmade for the progranmer by the BASIC system
As well as this, BASIC prograns are expressed in such a
way that they are readily understood by people whereas
the notation wused for assenmbly code bears little
relation to the logical processes involved in solving
the problem at hand.

However, in spite of these difficulties, there are
three fundanental advantages in progranmng in assenbly
| anguage rather than BASIC:

(1) The programrer has conplete control over the
machi ne. If he wishes to use his own particul ar
way of manipulating characters or to access
hardware features in sone non-standard way, this
is possible in assembly I|anguage but inpossible

in BASIC.
(2) Assenbly |anguage programs are very nuch faster
than equivalent BASIC prograns. Because the

transl ati on phase from BASIC to nachine code is
avoi ded, assenbly |anguage prograns typically ex-
ecute at least 100 tines faster and sonetines as
much as 1000 times faster than corresponding
BASI C progr ans. This means that they are suit-

able for programs, |ike some arcade-type ganes,
which rmust react very quickly to input from the
user.

(3) Assenbly | anguage prograns are nore conpact, that
is, occupy less nenory, than their BASI C
equi valents. This is particularly inportant when
large programs are witten which may require al-
nost all of the nenory avail able on the machine.

O course, there are also disadvantages associated wth
progranming in assenbly |anguage apart from the obvious
one that the programrer nust remenber many |owlevel
details of the machine. These disadvantages are:

(1) Because the progranmer has conplete control over
the machine, it is nore difficult to detect mis-
takes in assenbly code prograns. As long as a
valid instruction is witten, something wll hap-
pen even although the instruction does not do
what the programmer really wants. Whereas the
BASIC system has many built-in checks which
detect errors like dividing by zero, no built-in
error detection is available to the assenbly
| anguage programmer.

(2) Because of the lowlevel nature of assenbly
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| anguage programs and because the progranmer nust
explicitly include his own error checking facili -
ties, assenmbly I|anguage progranms are usually a
good deal longer than their BASIC equivalents.
This means that they take longer to wite, are
nmore difficult to understand, and are likely to

contain nmore mstakes than high-Ievel |anguage
programns.
Because  of the conplexity of assenbl y | anguage

programm ng, it is best to adopt a nulti-stage approach
when developing a program which is ultimately witten
in assenbly code.

The first stage is to work out the solution to your
problem in very general ternms and to wite down this
solution in sone stylised way. This is a very high-
| evel expression of what your program ought to do. For
exanpl e, say you are devel oping a gane where the player
must shoot down alien spacecraft. Part of the genera
hi gh-1 evel expression of this night be:

if firing button pressed then
[ aunch mnissile
if alien detects nmissile launch then
drop anti-mssile bonmb
if dodge key pressed then
nove missile to avoid bonb
el se
m ssile destroyed

In fact, this approach is always how we work out the
logic of programs although, sonmetines, we do it in our
heads rather than explicitly on paper. Witing down
the solution is nuch better because when we hold
detailed information nentally it is very easy to forget
bits of the problem solution or to nake nmnistakes when
mentally translating to a programm ng | anguage

The second stage, which is particularly inportant
for inexperienced assenbly |anguage programrers is to
transl ate the general, abstract problem solution into a
hi gh-1evel programm ng |anguage |like BASIC. Here, you
must decide how |logical operations such as ‘'firing
button pressed’ are actually to be inplenented. For
example, in the above program mssile dodge keys m ght
be "4' to nove left and '6' to nove right. W mght
code that part of the solution as:

KEY$ = | NKEY$
IF KEY$ = "4" THEN MSX = MSX - 1
IF KEY$ = "6" THEN MSX = MSX + 1

where M SX represents the x-coordinate of the mssile.
An advantage of this intermediate stage between
probl em solution and assenbly code program is that the
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BASI C program can sonetinmes act as a prototype for the
final program This lets you tr%/ out ideas and debu
the logic of the solution before becomng invol ved wt
the details of assenbly | anguage.

The third stage in the devel opment of an assenbly
| anguage program is to take the high-level |anguage
ﬁ)_rogram and to translate it, by hand, to assenbly code.
his is a straightforward process and the assenbly
| anguage equivalents for BASIC statenents are described
later 1n this chapter.

Sonmetimes it isn't necessary to translate the
conplete program into assenbly code. Typically, nost
prograns have relatively snall sections, such as a
di spl ay subroutine, where they spend nost of their
tine. It is possible to code these tinme-consum ng
subroutines in assenbly language and to link theminto
a BASIC Brogram This often gives the speed-up effect
desired by the programrer and the chore of translating
the whole program into assenbly code can be avoided.
W explain how assenbly code subroutines can be |inked
wth | C prograns in Chapter 6.

In any direct translation of a BASIC program to
assenbly | anguage, there is bound to be redundancy.
For exanple, say we have two BASIC statenents:

M=M+ 1
V=V+M
A direct translation of these into assenbly code,

assumng that both M and V can be held as 8-hbit
integers, is:

LDAM ; A=MMM
ADDA 1 ; A=A+1
STAM  MEMM =A
LDAV  : A= MMV
ADDAM : A=A+ MMM
STAV MMV = A

However, this can be optimsed by wusing the INC
instruction to add 1 to A An optinmsed version of
this instruction sequence is therefore:

Y AL
ADDA M ; A=A+ MM
STA V i MEMV) = A

The final stage in devel oping an assenbly code program
therefore, is to take the BASIC equival ent program and
to elimnate redundant steps in order to optimse the
program  Some obvious elimnation of redundancy can be
done during stage three but program rearrangenent, the
use of different addressing nodes, etc. should be left
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until this final st age. In the exanples in the
following chapters we show how optimsation can make a
consi derable difference to the size of a program

This chapter and the following tw chapters are

devoted to assembly |anguage programi ng. In the
remai nder of this chapter, we describe a class of
program called assenmblers. An assenbler translates
i nstructi on menoni cs, synbolic names, etc. used by the
programer to machi ne code. It is a vital tool for the

serious assenbly |anguage progranmer.

The follow ng chapter, Chapter 5, shows how commonly
used progranm ng constructs such as assignnents, |oops
and conditional statements may be programred in
assenmbly | anguage. The approach which we use here is to
take BASIC statements inplenenting these constructs and
show how assenbly | anguage equivalents to these can be
built up. W also show how these 'BASIC equivalent’
programs can usually be optimsed to produce a program
whi ch has inproved space and tinme efficiency.

Chapter 6 |ooks at nore advanced aspects of assenbly
| anguage progranmng. |In that chapter, we describe a
gener al - purpose technique for inplementing subroutines
and we show how character strings may be represented
and mani pul ated. We also describe how to link assenbly
| anguage subroutines wth BASIC programs and how to
wite assenbly code which is position independent.

It is beyond the scope of this book to discuss

assenbly |anguage progranming in great detail. Thi s
requires a book in itself and, to supplenment the
materi al here, the reader may find it useful to refer

to sone of the textbooks on M809 assenbly |anguage
progranm ng which are listed in the reading list.

4.1 THE ASSEMBLER PROGRAM

We have already introduced, in earlier chapters, the
idea of an assenbler as a program which translates
assenbly |anguage statements to nmachine code. This
translation is not a difficult process as it sinply
requires the program to look up tables of nanmes and
associ ated hexadeci mal val ues. However, for humans this
is a slow, tiresome, error-prone task. In fact, it is
the kind of job that conmputers excel at and we
recoomend that you should try to avoid the hand
transl ati on of assenbly code.

For each  machi ne, there are usually several
di fferent assenbl ers avail abl e from di f ferent
suppliers. Sone of these might have nore sophisticated
features than others but all wll provide at l|east the

following facilities.

(1) The translation of mmenpnic instructions to their
equi val ent hexadeci mal op-codes.
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(2) The ability to associate labels wth assenbly
| anguage statenents. Reference to these |abels

within the programwll result in the address of
fh% II abel led statenent being substituted for the
abel .

(3) The associ ation of names with specific nenory | o-
cations. Wen these variable nanes are used by
the programnmer, the assenbler substitutes the ac-
tual nmenory address of the variable.

(4) The translation of decinmal nunbers to their hexa-
deci nal equi val ent.

(5) The translation of synbolised address references
such as [ ,X ] for indirect indexed addressing to
the appropri ate postbyte, offset, etc.

(6) Limted error checking indicating if an invalid
menoni ¢ has been used, if a label referenced in
an instruction is not declared, if a short branch
is used where a long branch is required, etc.

The particular assenbler whose facilities we shall
describe in this chapter is the DREAM assenbler,
avail abl e fromthe manufacturers of the Dragon. This is
a typical assenbler which uses fairly standard Mtorol a
MB809 notation, as set out in Appendix 1, for assenbly
| anguage instructions. There may be slight differences
in detail if you use a different assenbler but, in
general, the description of facilities below applies to
all assenblers which are available for the Dragon.

The single exception to the standard notation is
when indirect addressing is used. As the synbols !
and ' ]I are not Dragon keyboard characters, the
assenbl er uses round brackets ' (' and ' ) ' to indicate
indirect addressing. W shall follow this convention
from now on but the reader who is using sone other
assenbl er should read (<address>) as [<address>].

As well as being an assenbler, DREAM is also an
editor. It provides facilities for inputting,
nodi fying, duplicating and saving text on a cassette.
This text need not be assenbly code but nmay be anything
at all. However, as the wediting and assenbling
facilities are conbined, the inplenmentors of DREAM
clearly see the creation and editing of assenbly
| anguage instructions as its major task. As assenbly
language instructions do not have explicit line
nunbers, it is not possible to use the |C editor to
create and edit assenbly |anguage prograns.

The standard format for an assenbler source line as

input to DREAM or any other assenbler based on the
standard Mdtorola notation is:
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<l abel > <mmenoni c> <operand> <conments>

The different fields in the source 1line nmust be
separated by one or npre spaces. The <l abel> and
<comments> fields are optional, the <mmenonic> field

must be present as nust the <operand> field except for
those instructions which use inherent addressing and do
not require explicit operands.

4.1.1 The label field

The label field, if present, nust start in the first
colum of the source Iine. Anything that starts in
colum 1 is therefore taken, by the assenbler, to be a
| abel . If you make a nmistake and put a menonic in
colum 1 or a label starting in sone other colum the
assenbler will get very confused indeed.

Label s nmust start with a letter and may only contain
al phanuneric characters, that is, letters and numbers.

Most assemblers inpose a limt on the length of a Iabel
- the DREAM assenbler, for exanple, insists that |abels
be no nore than 6 characters | ong.

The table bel ow shows exanples of valid and invalid
statenent | abels.

Valid Labels Invalid Labels

A372 372A (label must start with a letter)
NEXTCH NEXTCHAR (1 abel too |ong)

ot INQUT (label may not contain '-')

There is a single exception to the rule in the DREAM
assenbler that Ilabels may contain only al phanuneric
characters. One label, and one label only, in the

program may have a '@ as its first character. For
exanple, @START or CBEG N are valid |I|abels although
both may not be used in the same program The | abel
whose first character is '@ is one way of indicating
to the assembler where to start program execution when
the assenbled machine code program is run on the
Dr agon.

Al t hough the labels A, B, X Y, U S CC, PC, and DP
are not invalid, you should avoid using them because of
potential confusion wth the M809 register names.
Simlarly, you should not use labels which are
identical to assembly |anguage menoni cs.

4.1.2 The menonic field

The mmenonic field of an assenbler input Iline nust
contain one of the instruction menonics that we
covered in the previous chapter. It must be separated
from the label field by at Ieast one space. If no
label is present, the menonic field nmust still be
preceded by one or nobre spaces otherwise it wll be

taken as a | abel.
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4.1.3 The operand field

The operand field in an assenbly |anguage instruction
nmust be present except for those instructions Iike
I NCA, ABX, MJL, etc. which have no operands. It nust be
separated from the menonic field by at Ileast one
space. The operand field specifies the operand address
and the following conventions are used when using the
DREAM assenbler to indicate which addressing node is
bei ng used.

Regi st er addressing
The nanes of the source and destination registers are
separated by a comma. For exanpl e:

TFR X Y
EXG A DP

| mredi at e addr essi ng

The immediate value is preceded by a '# synbol.
default, imediate values are decinal but hexadeci nma
values may be input by preceding the value with a '$
synbol and character values by preceding them with a
quote "'" synbol. It is also possible to associate
synbolic names with constants and these nay also be
input as imredi ate val ues. For exanple:

LDA #10

LDB #$10
LDA # +

LDA #NMAXI NT
LDA #LAB1

If the imrediate operand in an instruction is a program
| abel, the value substituted for the synbolic label is
the address of the |abelled statenent.

D rect and extended addressing

In general, the assenbler wll decide for the
programrer whether it is best to use direct or extended
operand addressing. DREAM works out if the addressed
operand is within a page of the current DP register
setting and, if so, it generates a direct address.
Q herw se, an extended address is generat ed.

A synbolic name on its own indicates either direct
or extended addressing as decided by the assenbler.
The c;Jrograrmer may force extende addressing by
preceding the nane with a '> character or may force
direct addressing by preceding it with a '<' character.
For exanpl e:

LDX VNAME D rect or extended
LDX >TNM Force extended addressing
LDX <COUNT Force direct addressing
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| ndexed addressing
The general form of an indexed address is:

<of f set >, <i ndex register>

The offset may be a register name, a synbolic nanme, a
constant value or may be left out altogether. The
regi ster nane nust be X, Y, Uor S and, if no offset is
present, auto increnment or decrenment may be specifi ed.

The follow ng exanples all show generalised indexed
addr essi ng.

LDA BASE,PCR PC relative
STX OFFST, Y Synmbol i c constant offset

STD -16, X Const ant of f set
LDA X Zero offset
LDB AU Regi ster offset

Auto increnent and decrenent may only be used with zero
of fset addressing. They are indicated by prefixing the
index register name with '-' or '--' or by suffixing it

with '+ or '++ . For exanple:

STX | Y++ Auto increnment by 2
STA | St Auto increment by 1
LDB ,-Y Auto decrement by 1

LDD ,--S Auto decrenent by 2
In all cases, the assenbler works out whether the
specified offset should be represented as a 5-bit, an
8-bit or a 16-bit offset. The programer may force an

8-bit offset by preceding the offset with a '<
character and may force a 16-bit offset by using a '>
synbol . It is not possible to force the assenbler to
generate a 5-bit offset. For exanpl e:

LDD <4, X Forces 8-bit rather than 5-bit offset.
STX >32,Y Forces 16-bit rather than 8-bit offset

I ndi rect addressing
Indirect addressing is indicated by surrounding the

operand field with round brackets. For exanpl e:
LDA ( VALADD) I ndi rect extended
STX (AY) I ndi rect indexed

VWhen using constant values within the operand field,
the DREAM assenbler allows a limted formof arithnmetic
to be used. If constant expressions using '+ and '-'
are specified, DREAM wll carry out the necessary
arithmetic as it assenbles the program For exanple:

LEAS BASE+8, U
LDD #START - 10
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BRA * + 12

An asterisk (*) means the value of the program counter
at the start of the current statenent. Noti ce that
this is not the sane as the actual PC value which
refers to the next instruction to be executed.

4.1.4 The comments field

The comments field is wused to provide descriptive
comment about the associated assenbly code instruction.
It nust be separated by at |east one space from the
operand field but the convention when using the DREAM
assenbler is to separate the coments field from the
remai nder of the instruction by two or nore spaces and
to make the first synbol a sem -colon. For exanple:

LDA T ; put top value in A
Comments taking up an entire line wmy also be
i ntroduced by placing a '* in colum 1. Most MBB09
assenmblers will recognise this as a comrent and ignore

the remai nder of the line. For exanple:
* An asterisk indicates a coment

In order to make assenbly |anguage statenments as

readable as possible, it is best to adopt a fairly
rigid, fixed format layout for instructions. The
follow ng layout is suggested:
Colums 1-6 Label or blank if statenent

is unlabelled
Col ums 8-11 Mhenoni c
Colums 13-19 Oper and
Col ums 22- Coment
If the operand is nore than eight characters long, it
wil | obviously overflow into the coments field.

Depending on the length of the comment, you may either
continue it on the sane line or start a new line wth

"** and include the comrent field on that Iine. I'n
general, when all of a conment cannot fit on the
instruction line, the continuation on succeeding |ines

shoul d be aligned.
Exanpl es of this layout are:

BEG N LDD MAX ; Start with max

SUBD #1 ; Take 1 off it

CVPD M NVAL ; Conpare with mn.

BEQ VALSEQ
As with all Iayout conventions, there are many special
cases which do not fit well wth the convention.

Slight changes may avoid taking a new line for a short
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comment continuation or nay mnake the program nore
readabl e. The programmer nust use his common sense in
this respect and nodify the above rul es accordingly.

The output from the DREAM assenbler consists of a
listing of the source lines with each line preceded by
the address of the corresponding machine instruction
and the hexadecimal representation of the instruction
itself. For exanple, assumng the instruction address
was 4E40, this mght appear:

4E40 4C | NCA ; increnment pointer
4EA1 1F8B TFR A DP : and |oad DP

Notice that the address is increnented according to the
nunber of bytes in the instruction. Ve shall describe
how the initial assenbler address is set up in a later
section (4.2.5) of this chapter.

4.1.5 Assenbling w thout an assenbl er

If you don't have an assenbl er program but want to run
machi ne code prograns, you have to translate the
assenbl y Iangua%e statenents to hexadecinal nachine
code by hand. his is only realistic if you have onl

a few statenments to translate and you only do suc
translations fairly occasionally.

There is enough information in Chapters 2 and 3 and
in the appendices to allow you to translate from
assenbly language to nmachine code. You nust kee
careful track of the nunber of bytes taken up by eac
instruction so that your relative addresses are
correct. It is best to nake a table for yourself of
the synbolic names which you use and the nenory
addr esses whi ch you have assigned to them

Ohce you have conpleted the translation from
assenbly code to mnmachine code, you then load the
hexadeci nal repr esent ati ons of your machi ne
instructions into nmenory and start executing them
This can be acconplished using another program called a
| oader. In the final section of this chapter, we
rovide a listing of a loader, witten in BASIC, which
E’(KES hexadeci nal codes into menory. You may either
then execute the nachine code program with an EXEC
command or you may include such a coomand in the | oader
so that the machine code is immediately executed.

4.2  ASSEMBLER D RECTI VES

Assenbler directives are instructions wused by the
programrer to give commands to the assenbler. They do
not cause machine instructions to be generated but they
may alter internal assenbler variables. Assenbl er
directives are the means by which synbolic names are
associated with addresses and they also allow the
programrer to specify the initial values which nenory
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bytes should take before his programis executed.

The operation of assenbler directives can only be
understood in the context of the general rmenory
organi sation which is assuned by the assenbler. Figure
4.1 shows this organisation for that part of menory
used by the assenbler.

e ————————————————— - e ———— II?F_'FF
DREAM
: ASSEMBLER
| - | 6C80
6CTF
DEBUG BREAKPOINT TABLE
6C00
) D————— 6BFF
NTR FIE 4
_Cf__} OL_ L_DS_ 6B00
T'EXT_TABLE_
DREAM ! SYMBOL
WORK |, EARLE ol
SPACE
GENERATED
CODE A4E21
| aE20
BASIC STRING STORAGE
| - | 4D58
4D57

SYSTEM STACK

BASIC PROGRAM STORAGE

Fig. 4.1 Assembler memory map

There is a large area of RAM which is reserved by
the assenbler as its work space. This workspace
imedi ately follows the machine code of the assenbler
programin the Dragon's nenory.

At the top of this work space, the assenbl er creates
its own internal tables which it uses in the
translation of the programrer's assenbly code to
nmachi ne code. As the nunber of entries in these tables
deBends on the size of the program being assenbl ed, the
tables are variable in size. As new el enents are added
to the table, they are allocated |ower rmenory
addresses. Dynamcally allocated areas of this sort are

shown on nenory maps as wavy lines wth an arrow
indicating the direction of growh.
As an illustration of how this table is set up, say

the top address in the assenbler's work space is 6AFF.
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The first table entry, which mght be 8 bytes long, is
al | ocated address GAFF. The following table entry has
address 6AF8, the one after that 6AF0, and so on. The
table grows downwards in nenory as each succeeding
element is all ocated.

As the assenbly |anguage program is translated, the
generated machine code nust be stored sonewhere in
menory. The area chosen by the assenbler for the
generated machine code is at the bottom of its work
space and the generated machine code grows upwards in
nmenory.

The assenbler uses an internal variable called the
assenbl er program counter (APC) to keep track of where
the next generated machine instruction is to be placed
in its work space. As instructions are generated, APC
is increnented by the length of the instruction in
bytes. Sone assenbler directives also affect the value
of APC and their effects are discussed along with the
description of the directives in question.

4.2.1 The EQU directive

The equate directive is the directive which is used to
associate a synbolic name with a constant decinmal or
hexadeci mal val ue. It has the general form

<l abel > EQU <val ue>

It is good progranming practice to nmke extensive use
of equate directives to nane constants used in your

program If you chose a nane related to the constant's
function, this makes the program easier to understand.
Furthermore, if you need to change the value of a
const ant, you nmerely need to change the equate

directive rather than search through your program
changi ng the absolute value every tine it is used in an
i nstruction.

Examples of equates defining absolute constant
val ues are:

MAXI NT EQU 32767 ; maxi mum al | owed i nteger
TABSI Z EQU 100 ; sone table size

CFF EQU $00 ; define a value nmeaning off
ON EQU $FF ; a val ue neani ng on

The constant value in the equate directive may include
other synbolic constants defined by an equate and may
also include the synbols ' +' and '-'. The assenbler
carries out the necessary arithmetic to conpute the
equated value. For exanple:

TRUE EQU ON ; TRUE has val ue $FF
FALSE EQU OFF ; FALSE = $00
UTABSZ EQU TABSIZ - 15 ; UTABSIZ = 85



78

As well as being used to associate names wth program
constants, the BEQJ directive may also be used to nane
locations in a menory page when direct addressing is to
be used.

Recall that the direct addressing node uses the DP
register to hold the hi-byte of the menory address with
the lo-byte of the address obtained from the
instruction itself. Not only is this form of
addressi ng space efficient as addresses only take up a
single byte, it also neans that nenory |ocations can be
reserved for variables in a position Independent way.

The programrer need not decide the absol ute address
in menmory which is to be allocated to particular
variables. Rather, he may set up their addresses as a
di spl acement fromthe start of a page. Were that page
actually resides in menmory when the programis executed
is governed by the setting of the DP register which may
be assigned i medi ately before execution. W shall say
nore about position independence in Chapter 6.

The equate directive is used to associate page
addresses with synbolic nanes. For exanpl e:

DELAY BEQU $00 ; first byte in page
QURPCS EQ $01 ; COURPCE takes up bytes 1 and 2
| NCH EQU $03 ; byte 3

The names used in an equate directive nust obey the
nornmal rules for assenbler labels. That is, they nust
start wth a letter, contain only al phanuneric
characters and may be no nore than six characters |ong.

The equate directive does not affect the assenbler’'s
program counter. Nanmes and associated values are
stored in an internal assenbler table and, when the
nane is used in a program its value is substituted for
it.

4.2.2 The FCB/FCC directive

The FCB/FCC directive is used to format data bytes.
That is, the programmer uses this directive to allocate
store and to associate a particular value wth each
byte of that allocated nenory. The general form of
this directive is:

[ <l abel >] FCB <value list>

The label is optional and rmust obey the usual rules for
assenbler labels. If a label is used, its value is
deened to be the address of the allocated data byte.
The value list is a list of one or nore initial values
expressed as decimal nunbers, hexadecimal nunbers or
character constants.

In sonme assenblers, the directives FOB and FQOC have
different meani n?s with FCB used to format single bytes
and FOC used to format ASCI| character strings. In the
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DREAM assenbl er, however, they are equivalent and are
handled in exactly the same way. Therefore, the
g:iirectijve FCB may be replaced by FOC anywhere that it
i s used.

Exanpl es of FCB directives are:

Set up the nane of a data area for an error nmessage
The first byte holds the Iength of the nessage

The following characters hold the ASQ | characters
* of the message itself

*

ERRL  FOB 13,/NO INPUT CHAR/

*

* Notice how strings are delimted by the / character
* Set up a byte with value 1F (hex)

*

* o *

FCB $1F

* Set up a 5 byte nenory area with bytes initialised
to the hex values 8E, 8F, 90,91, and 92

TAB1 FCB $8E, $8F, $90, $91, $92

The FCB/FCC directive affects the assenbler program
counter. If APC has the value 5000 say when the FBC
labelled ERRL above is processed, its value after
processing is 5000 + 14 (decinal), that is 500D. Note
that if a value greater than FF (hex) is used with an
FCB directive only the lo-byte of that value is used in
the initialisation.

*

4.2.3 The FDB directive

The FDB directive is simlar to the FOB directive.
However, rather than formatting single data bytes, it
formats 16-bit values taking up 2 bytes (1 word). It
general formis:

[ <l abel >] FDB <value list>
Exanpl es of FDB directives are:
DQATS FDB 1,2,3,4,5,6,7,8,9,0
MAXVAL  FDB 1024

| NSUB FDB GETNUM

The first two FDB exanpl es above format data words to

the specified values. In the third exanple, the
constant filled in and nanmed INSUB may be the value
associated with the nane GETNUM i f NUM is defined

via an BEQU directive. Aternatively, if CETNUM is an
instruction |abel, the location naned INSUB is filled
in with the address of the l|abelled instruction.

This facility allows you to create tables of
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addresses and then use indirect addressing to access
the instructions or data whose addresses are kept in
the table. For exanpl e:

SUBTAB  FDB | NCHAR, QUTCH, | NRD,
QUTWRD, RESET, CLOSE

This directive mght be used to create a table of
subroutine addresses with the subroutine nanes given on
the right hand side of the directive.

Li ke FCB, FDB affects the assenbl er program counter,
increnenting it by tw for every word fornatted.

4.2.4 The RVB directive

The RMB directive is used to reserve one or nore menory
bytes. It does not set them up to any specific val ue,
it merely increments APC by the value specified in the
directive. The general formof an RMB directive is:

[ <l abel >] RMB <val ue>

The value nay be either a synbolic, hexadecimal or
deci mal constant. For exanpl e:

INCHAR RMB 1 ; reserves a single byte

QUTBUF RWB 256 ; reserves a 256 byte buffer
BI cally, is used to reserve space which wll
sequent |y be all ocated values in I/O operations.

4.2.5 The CRG directive

The CRG directive is used to assign a value to APC and,
hence, sets up the logical origin of the generated
machi ne code ich follows that directive. It is not
obligatory to include an ORG directive in a program
If there is no CRG directive, the DREAM assenbl er sets
up its program counter to have an initial val ue equal
to the bottomof its work space.

The general formof an GRG directive is:

[ <l abel >] CRG <addr ess>

Exanpl es of this directive are:

CRG $5000 ;  APC = 5000 (hex)
NEWBEG CORG * + 128 : * means current val ue of APC
* This directive is equival ent
* to RVB 128

Al the exanples in this book have been tested with a
code origin at nenory address 4E21 (20001 decimal)
This is set up with an CRG $4E21 statement as shown iIn
the exanple in section 4.3 bel ow
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4.2.6 The PUT directive
The PUT directive is used to tell the assenbler where,
in RAM the generated object code should be placed. It
is a means of overriding the assenbler's normal placing
of generated code at successive addresses starting at
address 4E21 which is the bottomof its work space.

The general formof a PUT directive is:

PUT <addr ess>

Normally, a PUT directive is preceded by an RG
directive to set the APC to the address where the
generated code is to be placed. This is not
obligatory, however, if you are going to nove the code
before executing it or if the code is conpletely
position independent.

4.2.7 The SETDP directive

The SETDP directive is used to tell the assenbler the
current value of the direct page regi ster DP. Renenber
that the assenbler decides ether to use direct or
ext ended addressing when a synbolic name is used in the
address field of an instruction. To make this
decision, it must know the value of DP at that point
and SETDP is used to provide that information. The
general formof the directive is:

SETDP <hex val ue)

The operand nust be a hexadecimal value in the range 00
to FF. The SETDP directive only provides infornmation to

the assenbler; it does not cause instructions to be
generated to assign a value to the direct page
register. It is the programrer's responsibililtjg to
ensure that the actual run tine value of is

consistent with the value used in a SETDP directive.

4.3 EXAVPLE PROGRANS

In this section we present tw conplete, workin
progranms which the user na%/ type into his machine an
execut e. The first of these prograns is a |oader
rogram witten in BASIC, which allows the user to
machine code into particular locations in the
Dragon's nmenory. This code rmay then be execut ed.

The ot her exar_‘rl_ple programis presented in both BASIC
and assenbl er. his is a sinple program designed to
illustrate just how nuch faster machine code prograns
can be. The programfills the display screen with every
character, one after the other. Wen the BASIC version
of the program executes, you wll see that this
operation takes about 2 seconds per screenful. The
assenbly |anguage version fills the screen with each
character in a fraction of a second. The nachine code
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for the assenbly |anguage version of the screen filler
is included, in hexadecimal, as the DATA statenents in
the BASI C | oader.

Both of these exanples are comrented and should need
no further explanation.

10 ' Machi ne code | oader

11 ' Machine codes in hex are poked into nenory

12 ' locations starting at 20001 then execed

20 READ LA " LA = load address (start of program
30 READ EA " EA = address of first instruction

40 PA = EA 'to be executed

50 READ HB$ ' Hex constants

60 |F HB$="END' THEN 100

70 PCKE PA, VAL("&H"+HB$) ' Poke value into menory
80 PA = PA+ 1 ' Increnment address

90 GOTO 50

100 PRI NT "MACH NE CODE LOADED"

110 PRINT "LOAD ADDRESS IS "; LA; " (DEC)";
111 PRI NT HEX$(LA); " (HEX)"

120 PRINT "END ADDRESS IS "; PA-1;"(DEC)";
121 PRI NT HEX$(PA-1);" (HEX)"

130 PRI NT "EXEC ADDRESS |S"; EA; " (DEC)";

131 PRI NT HEX$(EA); " (HEX) "

140 PRI NT "YOU ARE ADVI SED TO SAVE LOADER "
141 PRI NT "BEFORE RUNNING M C CODE"

142 'If you want to execute the |oaded code
143 'imrediately, you should put an

144 'EXEC EA statenent here. If you do this
145 'for this program you lose BASIC print
146 'information

150 DATA 20001 'Load address here

160 DATA 20001 'Execute address here

165 ' You put your own machine code in hex
166 ' here to load your hand translated
167 ' prograns

170 DATA 34,12 ' Machine code for the

180 DATA 86,00 ' Screen filler program

190 DATA 8E, 04,00 ' given bel ow

200 DATA A7, 80

210 DATA 8cC, 06, 00

220 DATA 25,F9

230 DATA 4C

240 DATA 81,80

250 DATA 25, Fl

260 DATA 35,92

270 DATA END

Program 4.1 BASI C machi ne code | oader

10 ' Fills screen with characters with codes
20 ' 0 to 127 in turn

30 FOR CH = 0 TO 127

35 ' Screen RAM addresses are from &H400- &H5FF



40 FCR SC = &H400 TO &HbBFF

50 PCKE SC CH
60 NEXT SC
70 NEXT CH
Program4.2 BASIC screen filler
* SCRFL - fill screen with characters

* Register inputs NONE

*
CRG $4E21
SCRFL PSHS A X
LDA #0
NXTSC  LDX #3$400
PRCH STA | X+
QWX #$600
BLO PRCH
I NCA
CVPA #128
BLO NXTSC
PULS A X PC

Save registers
First character
Screen base address
Store character

At end of screen?
No, next character

G on to next character

: Do anot her screenful

Restore and return

Program 4.3  Assenbly |anguage screen filler

83



Chapter 5
From BASC to assembly code

In this chapter we describe the assenbly |anguage
equi val ents of the nost commonly used BASI C statenents.
As well as the Iliteral translations of BASIC to
assenbl)é | anguage, we show how these constructs can
often be inplenented in a nore efficient way by
renovi ng some of the redundancy inherent in BASIC

The assenbl y | anguage 8rogran‘rrer nmust obvi ously know
the menoni cs for the M6809, the register nanes and the
synbol i sm for the MB809 addr essi n% nodes. It may seema
dauntin task to nenorise al this information,
although it is less so than nmenorising about 1400
machi ne instructions! However, the consistent and
orthogonal nature of the MB809' s instruction set makes
the task less difficult than mght at first be supposed
and, after a little practice, the programrer wll
easily renenber all the mmenoni cs whi ch he needs.

The basic buil ding bl ocks of progranms are assignment

st at enent s, condi ti onal st at enent s, [ o%los and
statements for input and output of data. Ve descri be,
in sonme detail, how each of these nay be inplemented in
assenbly language. W also cover the declaration and
calling of BASI G- Ii ke subrouti nes and t he
representation and mani pul ation of  arrays. The

notation which we use is simlar to that used in
?revi ous chapters. However, if a synbolic nane is used
or a nmenory |location, we use it in comrents here as if
it was a BASIC nane - we do not precede it with MEM

51 ASS| GNVENT  STATEMENTS

Assignnent statenents in BASIC are used to assign a
constant, the result of an arithnetic expression or the
value of a nenory location to sone other nenory
| ocation. For ease of reference, we may give synbolic
names to the menory |ocations involved although, if the
nmenor access routines PEEK and POKE are used, we
actually signify the absolute nermory |ocations to be
accessed. VW describe PEEK and POKE later and
](c:oncentrate here on assignments which have the general
orm

<pane> = <expressi on>

84
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The <name> on the left side of the = sign may be either
a variable name or nay be a reference to an el ement of
an array. The <expression> on the right side of the
equals sign nmay be a constant, a variable name, an
array element reference or an arithnetic expression
consisting of tw or nore operands separated by
arithmetic operators such as + and *.

Reference to array elenents will be dealt with later
so, in this section, we only describe assignments where
nuneric constants and variables are wused. Ve shall
make the further sinplification that these constants
and variables may only take 8-bit or 16-bit integral
values represented as unsigned nunbers or in two's
conpl enent not ati on.

This is not too great a limtation as many practical
applications of conputers don't need real nunbers. The
provision  of real nunber arithnetic in  nost
mcroconputers is nade using software routines which
mani pulate pairs of 16-bit quantities representing the
real nunber. This is a fairly conplex process, and if
the reader is interested in how it's done he should
refer to one of the conputer science textbooks
suggested in the reading list.

In general, assignnment statements on the M809 are
inplenented using the accumulator registers A B and
their catenation D when 16-bit nunbers are involved.
Although it is possible to nake wuse of the index
registers X Y, , and U these are usually reserved
for the storage of addresses.

The basic outline of an assignnent statenent in
assenbl y | anguage is:

Eval uate RH expression into an accunul ator register.
Store accunulator in nmenory.

For exanple, the assenbly |anguage equivalent of the

sinpl e |C statemrent M= 7 is
LDA #7 ; A=7
STA M ; M= A

Notice how i mmedi ate addressing is used to specify that
a constant value is to be loaded into a register. A
very common m stake nade by novice assenbly |anguage

programmers is to forget the # synbol indicating
I medi at e addr essi ng.
LDA 7 ; A = PEEK(7)

STAM ; M=A

The BASIC code docurmenting the assenbly |anguage
instructions shows how this gives a conpletely
different result. Rather than a constant value 7
being loaded into A the contents of nmenory byte
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7 (which may be any value between -128 and 127) are
loaded into the A register.

If a constant value between -128 and 127 is being
assigned, we may use either the A or the B register as
the accunulator. |If the value lies outside this range,
we nust use the D register for the assignnent. For
exanple, the BASIC statenent T = -3842 has the assenbly
| anguage equi val ent:

LDD #-3842 ; D
SID T ;T

- 3842
D

As Dis a 16-bit register, the SID operation results in
information being stored in two consecutive menory
byt es. If the address of T is 4E22, say, the
assignnment results in the hi-byte of D bei n% assi gned
to 4E22 and the | o-byte being assigned to 4E23.

Assignments of the form M = N are inplemented in
assenbly |l anguage in a conparable way:

LDAN ; A=N
STAM ; M=A

If the operands in the assignment T = R are 16-bit
quantities, the D register nust be used:

LDDR ; D=R

SIDT ,; T=D

Wien the right side of the assignnment is an arithnetic
expression consisting, in general terns, of constants,
variables and arithnetic operators, the assenbly
| anguage programrer nust arrange the evaluation of this
expression in an accunmulator. The evaluated value is
then stored. For exanple, the assignment statenent M=
N + P has the assenbly |anguage equi val ent:

LDA N A=
ADDAP ;, A=A+ P
STA M ; M= A

Notice that we are ignoring the possibility of overflow
and carry here. In sone arithmetic evaluations, this
nust be taken into account but, as we are sinply
illustrating concepts, we wll not introduce this
unnecessary conplicati on.

If the assignnent uses a mxture of 8-bit and 16-bit
val ues, the D register nust be used and, in sone cases,
8-bit values will automatically be extended to 16 bits.
For exanple, assuming T and R are 16-bit variables, the
assignment R=T - 10 nay be inplermented as fol |l ows:

LDD T ; D=T
SUBD 10 ; D=D- 10
STD R 7 R=D
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A 16-bit subtraction is autormticallé/ carried out in
this case. However , if mxed bit and 16-bit
variables rather than constants are used in arithnetic
expre53| ons, the programmer nust be careful not to use
a D register operation on an 8-bit variable. If such
an operation is specified, the addressed variable and
the follow ng nenory byte (which is not wanted) wll be
used in the operation.

For exanple, say T and R are 16-bit signed
quantities and M is an 8-bit signed (11uantity. A
carel ess assenbly |anguage ProgramTer translate
the assignnent T = M+ R as

hi = I\/EI\/(M Dlo = MMM + 1)

A conpletely incorrect value for the addition wll
result because of the LDD operation which does not |oad
the 8-bit value of Minto D

A correct assenbly code sequence for this m xed-
length arithmetic takes into account the fact that the
lo-byte of D is the B register. The sign extend
instruction is also used to make sure that the signs of
the 16-bit and the 8-bit values are the sane.

LDB M . B=M

SEX ; Extend sign bit of Bto A
ADDD R :D=D+R

SIDT ;. T=D

This mxed-length arithnetic becones nore conplex when
a subtraction is involved and the order in which
operands are loaded into Dis significant. Assunming T,
R and Mhave the sane values as before, the assignment
T =R - Mcannot be inplenmented using the same sequence
as above because the SUBD instruction has no facilities
for sign extension.

There are various different ways of inplenenting
this type of assignnment in assenbly |anguage. The
sinplest is to convert the 8-bit value to a 16-bit
value, store it in sone tenporary location and then
perform the subtraction using 16-bit operations only.
For exanpl e:

LDB M i B-M

SEX ; D= B (propagate sign)

SID ,--S ; Store Mon hardware stack
* Auto decrenent S so that it points to
* free location on stack

LDD R : D=R

SUBD , S++ . D=R- M
* Note how auto increnent used to reset
* stack pointer

SIDT T =
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There are no problens in inplementing addition and
subtraction operations in assenbly |anguage but
generalised mltiplication and division have no
correspondi ng machine instructions. These operations
must be inplemented by calling nachine |anguage
routines and it is beyond the scope of this section to
expl ain how these routines may be programmed.

However , multiplication and division of 8-bit
unsi gned c1uantities by nunbers which are powers of 2
may be inplenented very sinply by using the arithnetic
shift instructions ASR and ASL. Shifting a nunber |eft
n times is equivalent to miltiplying it by 2" and
shifting it right n tinmes is equivalent to dividing
that nunber by 2". Naturally, the division is an
i nt eger di vi sion operation wth the r enai nder
di scar ded.

For exanple, if | and J are unsigned 8-bit integers,

the assignment | = J * 4 mght be inplemented in
assenbl y l[anguage as fol | ows:
LDA J y A=
ASLA y A= A* 2
ASLA s A=A* 2
STA | ol =A
Smlarly, J =1/8 mght be inplenented:
LDA | ; A=
ASRA i A= A2
ASRA 7 A= A2
ASRA i A= A2
STA J I =A

Wsing shifts to multiply and divide signed quantities
is nore conplex because of the need to ensure that the
sign of the result is correct. W leave it as an
exercise to the reader to work out how to inplenent
signed nultiplication and division by powers of 2.

The PEEK and PCKE functions

The BASIC functions PEEK and POKE allow direct
reference to individual nenory bytes. Wereas PEEK is
always used as the right hand side of a nornal BASIC
assignnent, PCOKE is a specialised kind of assignment.
Therefore, T = PEEK(&H0406) assigns the byte value at
nmenory address 0406 (hex) to T and PCKE ASC("*"), &H0500
assigns the code for '* to the byte in nenory at
addr ess 0500.

PEEK and POKE are very easily inplemented in
assenbly |anguage using load and store instructions.
The assenbly |anguage equivalent of the above PEEK
instruction is:

LDA $0406 ; A = MEM 0406)
STA T S T=A
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The POKE operation has the equival ent assenbly code:

okt

A

LDA #' * ;A
STA $0500 T

The only difference between straightforward assignments
and PEEK and POKE is that. rather than synbolic
addresses, absolute nmenory addresses are used.

5.2 CONDI TI ONAL CONSTRUCTS

Condi tional constructs are fundanental program buil ding
bl ocks which allow other statements to be selected for
execution depending on the truth of sone condition. In
BASI C, conditional execution of statements or groups of
statenents is inplemented using |F-THEN statenents in
conbination with GOTO statenents.

More generally, condi ti onal constructs can be
partitioned into three classes:

(1) Single arned conditionals
These may be expressed:

if <condition> then <action>

If the specified condition is true, the <action>
is executed otherwise it is skipped.

(2) Two armed conditionals
These have the form

if <condition> then <actionl> el se <action2>

If the given condition is true, <actionl> is exe-

cuted and <action2> is skipped. |If the condition
is false, <actionl> is skipped and <action2> is
execut ed.

(3) Mul ti-armed conditionals

These are really conjunctions of single arned
condi ti onal s:

i f
<condi tionl> then <actionl>
<condi ti on2> then <action2>
<condi tion3> then <action3>

<condi ti onN> then <actionN>

The conditions are evaluated in turn. If the
evaluated condition is false, the associated ac-
tion is skipped and the following condition is
evaluated. If the condition is true, the associ-
ated action is executed and the renmi nder of the
condition/action pairs are skipped. In BASIC,
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mul ti-arnmed conditionals are wusually inplenented
as a sequence of |F-THEN statenents.

W shall consider each of these in turn and show how
they may be inplemented in assenbly |anguage. The
approach which we wuse is to show first how the
conditional is inplenented in BASIC W then describe
how this my be literally translated into assenbly
| anguage and finally optimsed to renove redundancy.

5.2.1 Single armed conditionals

In BASIC, single armed conditionals are expressed as an
| F-THEN statenent if only a single statenent is to be
condi tional ly execut ed. If a nunber of statenments are
to be executed if the condition is true, a goto is used
to skip over these statements if the given condition is
fal se rather than true

For exanple, if we want to swap the values of | and
J if J is greater than I, we might wite the follow ng
code:

100 ' Swap if J > 1. So skip if J <=1
110 IF J <= | THEN 200

120 T = J
130 J =
140 I =T
200. . .

In assenbly |anguage programming, we use exactly the
same technique of reversing the sense of the conparison
and skipping if this (reversed) condition is true. The
outline for this is:

Make comnparison setting CC bits
Branch if NOT desired condition to L

Code to be executed if original condition true

Assuming that | and J are unsigned 8-bit values, the
above BASIC sequence may be translated to assenbly
| anguage as foll ows:

LDB J

CWPB |

BLS L200
LDB
STB
LDB
STB
LDB
STB

[
=

e Bwthl
<= | goto L200

—WCeWHW O W
-+ 0
I I
“ 3
WHm— W&

L200
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This literal translation may be optimsed by notin%
that the first instruction loads the value of J into
and the same instruction is repeated after the
conpari son. As conparison does not affect register
val ues, the second load is unnecessary. Fur t her nore,
we are obliged in BASIC to use an intermedi ate variabl e
T in the swap sequence but in assenbly code this i
unnecessary. W nay sinply use another register. An
optimsed version of the swap sequence is:

LDA J A=

OWPA | ; conpare Awith |

BLS L200 ; if A<=J then goto L200

LDB | : B=1

STB J ; J =B, ieJ takes original value of I
;o=

STA | A ieoriginal value of J

Sinple BASIC IF-THEN statenents of the form IF P = Q
Tl P=P+ 1 may be directly translated to assenbly
| anguage as foll ows:

LDA P

CVPA Q ; Conpare A and Q

BNE L1 ; if A <> Qthen goto L1
LDA P ;s A= P

ADDA #1 A=A+ 1

STA P ; P=A

Again, this may be optimsed by using the fact that P
is loaded into a register to evaluate the condition and
then immediately reloaded after this conparison. This
second load can be elimnated. V¢ nay also use the INC
instruction to add 1 to a value rather than the add
i nstruction. The advantage of this is that INC
occupi es | ess space and executes nore qui ckly than ADD.
An optimsed formof the above sequence is:

LDA P ; A=P
OWA Q ; Conpare A and Q
BNE L1 ; if A<> Qthen goto L1
I NCA A=A+ 1
; P=A

STA P
L1 ....
In fact, we can reduce the nunber of instructions still

further by using the ability of INC to operate on a
nmenory | ocation:

LDA P
QWA Q
BNE L1
INC P

LT ...
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Assuming direct addressing of both P and Q the 4
instruction sequence takes up 8 nenory bytes, the 5
instruction sequence occupies 9 nenory bytes and the
literal translation of the BASIC code takes up 12
nmenory byt es.

5.2.2 Two arnmed conditionals

Two arned conditionals are inplenmented in BASIC b
using a conbination of IF-T statenments and (@]
statements. For exanple, the condition if <condition>
then <actionl> else <action2> is witten:

100 | F <condition> THEN 200
110 <action2>

120 QOrO 300

200 <actionl>

300. ..

Notice how we reverse the order of the actions and skip
over the second action if the condition is true.
Exactly the same outline structure is wused when
inplementing tw armed conditionals in assenbly
| anguage.

Eval uate condition

Branch if true to L1
Action2

Branch unconditionally to L2
L1 Actionl

L2

For exanple, if we wish to assign the higher of two
nunbers to sonme other variable, we nmght wite in
BASI C.

100 IF P > Q THEN 200
110 ' P <= Qhere

120 MAX = Q
130 GOTO 300
200 MAX = P
300 ...

Gven that P, Q and MAX are unsigned values, direct
translation of this BASIC sequence to assenbly |anguage
gi ves:

LDA P . A=P
CVPA Q ; Conpare A and Q
BH L200 ; if A> Qthen goto L200
LDA Q ; A=Q
STA NMAX ; MAX = A
BRA L300 ; goto L300
L200 LDA P ; A=P
STA MAX ; MX = A

L300
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Again, optimsation of this sequence is possible. The
statenent labelled L200 is a redundant load as A
already contains the value of P at that point.
Furthernmore, both actions end with an identical store
operation so it may be factored out and executed after
one or the other action is conplete. An optim sed
version is:

LDA P
CWPA Q
BH L200 ;if P > Q goto L200
LDA Q ;v A =0Q

L200  STA MAX . MAX = A

A sequence of 8 assembly |anguage instructions has been
optimsed to 5 instructions which do exactly the sane
t hi ng. W nust enphasise however that it is not good
progranmng practice to try to wite optinised code

directly. This is an error-prone process because the
pr ogr anmer is liable to becone caught up in
optimsation details and to lose track of the correct
sol ution. Wth high-level |anguage code to serve as a

master solution, the introduction of errors through
optimsation is nuch less Ilikely.

5.2.3 Miulti-armed conditionals
Multi-armed conditionals are conditional statenment s
where several conditions are evaluated and the action

following the true condition 1is executed. Reader s
famliar with Pascal wll recognise the case statenent
as a form of nulti-armed conditional but in BASIC it
nmust be i mpl enent ed as a sequence of | F- THEN
statenents. For exanple:

10 IF T =7 THEN AGE = BAND1

20 IF T =9 THEN AGE = BAND2

30 IF T = 14 THEN AGE = BAND3

40 |IF T = 15 THEN AGE = BAND4

50

O course, this may be translated into assenbly code as
a sequence of |IF-THEN statements as described above.
However, nmulti-arned conditionals often use the sane
value in all tests and often have similar actions wth
di fferent values being assigned to the same variable in
each action.

The following structure shows how nmulti-arned
conditionals can often be inplenented.

Load test variable

if NOT(testl) goto T2

Load value to be assigned

goto STORE

T2 if NOT(test2) then goto T3
Load T2 val ue



94
goto STCRE
STCRE Store value to be assigned

The above sequence of |IF-THEN statements nay be coded
in assenbly | anguage:

LDA T : Load variable to be tested
OWPA #7 ; First test, conpare Awth 7
BNE L1 ; if A <> 7 then goto L1
LDB BANDL ; variable to be assigned into B
BRA L4 ; Junp to store

L1 QOWA #9 ; Second test, conpare A and 9
BNE L2 ; if not equal, go on to next test
LDB BAND?
BRA L4

L2 OWPA #14
BNE L3 ; if A <> 14 then goto L3
LDB BAND3
BRA L4

L3 OWPA #15 ;. last test
BNE L5 ; do nothing if not equal
LDB BAND4

L4 STB ACGE ; assign to AGE

L5

Conpound conditional expressions

So far, we have |ooked at conditional statenents where
the condition involved is a sinple condition of the
form <operand>  <conditional oper at or > <oper and>.
However, conpound conditional statenents using ANDs and
ORs to connect conditions are also frequently used.
These have the general form

<sinpl e condition> <logical operator> <condition>
where permtted |ogical operators in BASIC are AND and
R

In BASIC, therefore, the following are all wvalid
condi tional expressions:

P=QANDT > R
J>T ANDJ < K
J>1 RK=1L
K=JAND (P>QCRT > R)

When such conditions are inplemented in assenbly
language we may wite them so that it is often only
necessary to test a single condition rather than the
conditions on each side of the AND or (R operator. This
i s possible because we know that both conditions nust
be true for an AND operation to be true and that both
?olnditions nust be false for an (R operation to be
al se.
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Therefore, if we test the first condition in an AND
operation and find it false there is no need to test
the second condition. Simlarly, if w test the first
condition in an (R operation and find it true, the
entire expression nust be true. The second condition
need not be tested. For AND operations, the outline
structure of an assenbly |anguage programi s:

Test left hand condition

If false goto L1

Test right hand condition

If false goto L1

ﬁ(itions if condition is true

For CR conditional operators, the outline is simlar:

Test left hand condition

If true goto L1

Test right hand condition

If false goto L2

L1 actions if condition is true
L2 P

VW illustrate this by showing how BASIC |F-statenents
with conpound conditions rmay be expressed in assenbly
code. Again, assume that all variables are unsigned 8-
bit quantities.

IFP=QANDT > RTHEN M= N
The assenbly |anguage equivalent of this is:

LDA P . A=P

WA Q

BNE QUJT ; if P <> Qskip second condition
LDA T  A=T

OWA R

BLOQJI ; if T < Rskip action

LDA M

STA M

Notice how only a single test is necessary if P is not
equal to Q

IF(P>QORT>R ADK=J THENM= N

To inplement this in assenbly |anguage we re-order it

to test first if K=J. |If this is false, there is no
need to carry out any nore tests.
LDA K . A=K

QWA J



96

BNEQUT ; If A <> Kdo no nore
LDA P
CWPA Q
BH K ; ORcondition is true, skip to action
LDA T
OWA R
BLO QUT ; Skip over action
(014 LDA N
STA M
aur

53 LOCOP CONSTRUCTS

Loop constructs are those programmng constructs which
allow the programmer to specify that a group of
statenents is to be executed a nunber of tines. They
take three fundarmental forns:

(L) For | oops
These execute the loop a specified nunber of
tines. A loop counter variable is used and the
loop termnates when this variable reaches a
speci fied val ue.

(2) Whi | e | oops
These execute the statements in the loop while
sonme condition remains true. Loop execution stops
as soon as this condition becones false.

(3) Repeat | oops

Repeat | oops cause the loop to be executed until
some condition beconmes true. The inportant dis-
tinction between repeat |oops and while loops is
that the test for loop termnation comes at the
end of a repeat Ioolp whereas it comes at the be-
ginning of a while |oop. Repeat |oops, therefore,
al ways execute at |east once.

BASIC provides facilities which allow each of these
looping constructs to be expressed. For loops are
constructed using FOR and statements and both
while and repeat |oops are built from conbi nati ons of
| F- THEN and O statenents.

VW shall now |look at each of these loop constructs
in turn and see how they nay be expressed in assenbly
| anguage.

5.3.1 For |oops

For loops are loops which execute a given nunber of
times. They have a controlling for-loop variabl e which
is incremented or decrenented by one or by sone
programrer specified value until it reaches a
termnating value. For exanple, consider the follow ng
BASI C program which sunms the integers between 1 and N
where N is sone positive nunber.
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100 TOT = O

110 FOR'I =1 TON
120 TOr = TOT + |
130 NEXT |

On conpletion of this program fragment, the value of
TOT will be the desired sum To see how this mght be
expressed in assenbly code it is best to consider it in
primtive terms using only |IF-THEN and GOTO statemnents
to inplenent | ooping.

100 TOT = O

110 I =1

120 IF I > N THEN GOTO 160
130 TOr = TOT + |

140 | = [I+1

150 GOTO 120

160

Now we have reduced the loop to conditionals and gotos
whi ch we know how to express in assenbly |anguage:

CLR TOT ; TOT =0

LDA #1 ;A=

STA |
LOooP LDA | ; =1

CVWPA N

BH OUTLP ; IF 1 > N stop |ooping

LDA TOT

ADDA |

STA TOT

I NC | ; Notice use of INC rather than ADD

BRA LOCP
QUTLP
In this exanple we have inplemented the statement |=I
+ 1 as INC | which appears to be a sensible
optim sation. However, if we look at the body of the
loop we see that | is not actually nodified in the |oop

body so we can keep the loop counter in a register for
the duration of the | oop.

CLR TOT ; TOT =

LDB #1 ; B=1, loop counter
LooP CvPB N

BH QUTLP ; if B > N then skip

TFR B, A ;
ADDA TOT ;

STA TOT
| NCB
BRA LOCP

w-H>>

||9|| I
@I >w

QUTLP

The above <code shows how the for loop may be
i mpl emented when TOT is an 8-bit val ue. If TOT is a
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16-bit value, an alternative strategy nay be adopted.
Because of the existence of the register add
instruction ABX, the B register nay be used to hold the
loop counter and the X register the sub-total as the
loop is executed.

LDX #0 ; X =0, initial total
LDB #1 ; Loop counter
LOCP CVWPB N
BH OUTLP ; If B> Nthen goto QUTLP
ABX ; X=X+ B
| NCB ; B=B+ 1
BRA LOCP ; goto LOOP
OUTLP STX TOTr ;o TOT = X

You can see from these exanples that there is no single
' best"' way of inplementing for loops in assenbly
| anguage. Rather, if optimal code is required, the
progranmer must look at the statements within the |oop
and code his loop with how they interact with the |oop
counter.

As a final exanple in this section, we show how a
FOR- NEXT loop using a negative step mght be
i npl enented in assenbly code. This exanple is also our
first introduction to arrays. The program fragment
assigns those nunbers between 100 and 50 which are
divisible by 8 to adjacent array elements. Therefore,
the first element holds 96, the second 88, the third 80

and so on. In BASIC, this may be witten as foll ows:
100 I =0
110 FOR J = 100 TO 50 STEP -2

F
115 RM= J - (INT(J/8) * 8)

120 IF <> 0 THEN 150
130 ARR(1) =3

140 | =1 +1

150 NEXT J

A conpletely literal translation of this programis not
possi ble because there is no direct equivalent in
assenbly | anguage to the divide operator. However, the
calculation of the remainder may be simulated by using
the fact that a binary nunber which is divisible by 8
always has its 3 least significant bits (bits 0-2)
equal to 000. If the bit pattern 00000111 is anded with
a nunmber and the result is zero then bits 0-2 of that
nunber nust be 000 and the nunber is divisible by 8.

In the assenbly |anguage exanple below, the array
ARR is accessed by placing the address of its first
element in register X | ndexed addressing is then used
to access this and succeeding el ements.

CLR | ;1 =0, not 1 as assenbly | anguage
* array indexes always start at 0
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LDA #100
STA J ; J = 100
LOOP LDA J
CVWPA #50
BLO OQUTLP ; if J < 50 then goto QUTLP
ANDA #$F8 ;7 AND with bit pattern 11111000
CWPA J ; Conpare anded value with original
BNE L150 ; if not divisible by 8 goto L150
LDB |
STA B, X ; Register B holds array index
| NCB
STB | =1+ 1
L150 LDA J ;o next J
SUBA 2
STA J ;o J =J - 2
BRA LOOP ; Back to LOOP

QUTLP

This code may be optimsed by making use of registers
to hold the value of the loop counter J and the array
index I. W leave this optimsation as an exercise for
the reader.

5.3.2 While |oops

VWile loops are loops which execute while sone
condition is true. Wuen this condition becones false,
execution of the loop term nates. In BASIC, while

| oops are i mpl enent ed usi ng | F- THEN and GOoro
statenments.
For exanpl e, consider the follow ng while |oop:

count = 0
while m> n do
m=m- n
count = count + 1
end while

In BASIC, this loop nmight be witten:

100 COUNT = 0

110 IF M <= N THEN 150

120 M- M- N

130 COUNT = COUNT + 1

140 GOTO 110

150
It is a straightforward task to translate this to
assenbly |anguage using the techniques which we have
already described for converting IFTHEN and GOTO
statenents to assenbly code:

CLR COUNT ; COUNT = 0
W.OOP LDA M
CVPA N
BLS QUTLP ; If M <= N goto OUTLP
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LDA M

SUBA N

STA M ; M= - N

I NC COUNT ; COUNT = COUNT + 1
BRA W.OCP

OUTLP

As usual, the direct translation of BASIC to assenbly
code may be optimsed by renoving redundancies and
maki ng nmore effective use of the processor registers.

CLRB ; Use B to hold COUNT
LDA M A= M
WLOCOP CMPA N
BLS QUTLP : If M <= N goto QUTLP
SUBA N : M= M- N
Don't store back into M
* as value is needed
| NCB : COUNT = COUNT + 1
BRA WL.OOP
QUTLP STB COUNT ; COUNT = B
STA M M= A
.*..

Although there are exactly the same nunber of
instructions in this optimsed sequence, the nunber of
i nstructions executed within the I|oop has been reduced
from 8 to 5. As these are the instructions which are

each executed several times (once for each 1oop
execution), this reduction neans that the optimsed
program will run nore quickly than its unoptinsed

equi val ent .

5.3.3 Repeat |oops

Repeat loops and while loops are simlar. The nost
i mport ant difference is that the test for |oop
termnation in a repeat loop comes at the end of the
loop whereas in a while loop the termnation test is
pl aced at the start of the loop. The result of this is
that repeat |oops al ways execute at |east once whereas,
if the while test is initially false, the while 1oop
will not execute at all. Again, the BASIC progranmer
uses |F-THEN and GOTO statenents to inplement repeat
| oops.

For exanple, consider the follow ng repeat | oop:

r epeat
m=m+t
p=p+m

until p >=n

In BASIC, this mght be witten:
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100 M= M+ T
110 P=P+ M
120 IF P < N THEN 100

Translating this BASIC program to assenbly |anguage
results in the followi ng program fragnent:

ROP LDA M
ADDA T
STA M ; M= M+ T
LDA P
ADDA M
STA P ; P=P+ M
LDA P
CVPA N
BLOROP ; If P < Ngoto RLOCP

V¢ leave the optimsation of this assenbly code
sequence as an exercise for the reader.

5.4  GOTO STATEMENTS

A though you may never have considered them as such,
the only function of BASIC QOIO statenents is to
provide a neans for the programrer to inplenent
conditional statenents and |oop statenents. You wll
have surmsed by now that the equivalent, in assenbl
code, to BASICS IO statenent is the unconditiona
branch instruction BRA <l abel >.

There is also an alternative form of the BASIC QOTrO
in assenbly |anguage and that is the unconditional junp
instruction JMP. Executing a JMP instruction causes the
program counter to be set to the value of JWM's
operand. Unlike the BRA instruction where the operand
is added to or subtracted fromPC, JMP s operand Is not
arelative but is an absolute val ue.

In general, you will probably find that you use BRA
nore often than JMP as It is part of the fundarental
mechani sm involved in the inplementation of |oops and
condi tional statenents.

55 I NPUT AND QUTPUT

e of the nost significant advantages of programmi ng
in a language like BASIC, rather than in assenbly
| anguage, is the fact that BASIC provides easy-to-use
statements for the input and output of program dat a.
CGeneralised input/output programmng is very conplex;
i ndeed, we devote the whole of Chapter 8 to this topic,
and the BASIC system hides nuch of this conplexity from
the progranmer.

In BASIC, we may say INPUT N in order to read a
nunber from the keyboard into variable N Simlarly,
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PRINT N prints the contents of the variable N on the
di spl ay screen. Wen you think of it however, you
don't really type the binary form of a nunber on the
keyboard nor do you get the binary pattern representing
the nunber printed on the screen. Rather, vyou type
characters, which happen to be the digits making up the
nunber required, and you read characters on the screen.

The BASIC system contains routines which convert
character sequences, say '5" and '8, to the binary

representation of 58. Smlarly, when printing a
nunber say -326, the PRINT routine converts the binary
p%:[te(g representing -326 to the characters '-', '3',

The assenbly |anguage programmer does not have ready
access to these | C conversion routines so nust
always deal wth input and output in terns of
characters rather than nunbers. If conversion to and

from nunbers is required, you nmust wite your own
conversion routines for this task. Sonme of these
routines are provided as part of the machine code
monitor program given in the final section of this
chapter.

As |I/O programmng is described in general in
Chapter 8, we only describe very basic facilities here
which allow you to input characters from the keyboard
and output characters to the screen. These operations
are carried out by calling subroutines which are an
inherent part of the Dragon’s input/output system

W call the routine which is wused to input
characters from the keyboard INCH  The details of how
this routine works are not inportant, all the user nust
know is how to call this routine and the results of the
routine call. Wen INCH is called, it interacts wth
the keyboard controller and returns an 8-bit value in
the A accunul at or. This value is either zero, which
nmeans that no key has been pressed, or is a code
representing the input character.

The key code returned by INCHis, in nost cases, the
ASA 1l value of the character typed by the user. The
exceptions to this, when another value is returned in
A are shown in the tabl e bel ow

Char act er Hex Code
Up arrow 5E
Shift up arrow 5F
Down arr ow 0A
Shift down arrow 5B
Shift @ 13
BREAK 03
Shi ft BREAK 03
Left arrow 08
Shift left arrow 15

Ri ght arrow 09
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Shift ENTER 2TV 0D
CLEAR 0C
Shift OLEAR 5C

A junp to the starting address of the INCH routine is
always stored in nenory at address 8006. The |NH
subroutine can therefore be called directly either by
using this address as the instruction operand or by
equating the name INCH with the address and using |NCH
in the operand field of the instruction.

VW call the routine using the junp subroutine
instruction JSR which pushes the value of PC onto the
Sstack and Lurrps to the called routine. @)
termnation, the called subroutine restores the value

of PC. Therefore, a character may be input as foll ows:
JSR I NCH

However, when you actually look for a character using
INCH there is no guarantee that a key has been pressed.
INCH returns O in Aif no key is pressed and also sets
up the condition code register flags. Renmenber, the Z
bit in GC indicates whether the result of the previous
operation was zero or not so, if CCZ is set, this
neans that A = 0. The follow ng short loop continually
calls INH until a character is actually input.

CGETCH  JSR I NCH : Look for a character
BEQ GETCH ; if none input, keep |ooking

The routine | NCH does not destroy any register contents
apart, obviously, fromA and CC. If the value of CCis
preci ous and nust be preserved, it nust be saved before
calling INCH and restored after the return from the
subroutine. For exanple:

PSHS CC ;. Save CC on S stack
CETCH JSR | NCH ; get a character
BEQ GETCH
PULS CC ;. Restore CC
Normally, it is not necessary to save and restore CC as

it should not be used to hold permanent information.

INCH s conplenent, a character output routine, is
accessed via address 800C and the name CQUTCH may be
equated with this address. As well as actually printing
the character on the screen, QUICH also noves the
cursor one space when a character is printed and
handl es the control characters 'Backspace', 'Return',
etc.

To output a character, that character should be
placed in the A register and QUICH called. The val ue
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of the condition code register is lost when QUTCH is
called but the values of all other registers, including
the A register, are not affected.

The use of QUTCH is illustrated by the follow ng

exanple which outputs a '* at the current cursor
posi ti on.

LDA #' * ; A= ASC("*")
JSR QUTCH ; Qutput character

Using these sinple character input and output routines,
we rmay now wite an assenbly |angu ge program whi ch
reads characters from the keyboard and prints them on
the display. Assune that the read/ print sequence hal ts
when the BREAK key is pressed.

LDA #$03
STA BREAK . Set location BREAK to
* BREAK key input code
CETCH JSR INH
BEQ CGETCH . Get a character
OWPA BREAK Is it BREAK
BEQ DONE ; If so, finish with no print
JSR QUTCH . Print the character
: Gt next character

BRA CGETCH

The final exanple in this introduction to assenbly
| anguage input and output reads 10 characters into a
menory area then prints themin reverse order. Notice
how auto increnent and decrenent of the X register is
used in this sequence.

CLRB ; B is counter register

LDX #CHARS ; Set up address of nenory area
CETCH JSR I NCH

BEQ CGETCH : Get a character

STA | X+ : Store it and increnent X

| NCB : Add 1 to counter

aowB #10 : |If counter <= 10 then

BLS GETCH ; get next character
* Now all characters are input and the address in X is
* one greater than the address of the last character
* in the sequence
* Count downwards to output themin reverse order

DECB . Reset B to correct nunber
oaJT LDA ,-X ;. Decrement X
* and fetch character to A

JSR QUTCH  Print it

DECB . One off counter

BNE COUJT ; If counter <> 0 goto QUTCH
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5.6 SUBROUTI NES

A subroutine is a self-contained section of code which,
usually, is set up to inplenent a particular function.
Subroutines may be called from within a program They
carry out their specified function and control then
return to the statenment following their call.

Subr out i nes are a very i mport ant progr ami ng
construct and the assenbly |anguage progranmer has
gr eat flexibility in how he defines and uses
subroutines. In fact, nmuch of the next chapter is

dedicated to this topic and we confine our description
here to an explanation of how BASIC S GOSUB command may
be i nmpl ement ed.

In BASIC, when we set up or declare a subroutine, we
assign it a line nunmber which is out of sequence with
the nunbers in the rest of our program To call the
subroutine, we set wup the values which it needs in
program variables and then execute a GOSUB <line
nunber> instruction. This transfers control to the
subroutine until a RETURN statenent is executed when
control returns to the calling program

For exanple, the following BASIC sequence calls a
subroutine to check if a nunber is an odd nunber |ess

than 20. If so, the subroutine converts it to another
nunber by adding 20 to it. Orherwise, it returns the
nunmber unchanged. The subroutine expects its input to

be stored in the variable INN and returns its output in
the variable OUTN.

100 INPUT | NN

110 GOSUB 1000

120 PRI NT OUTN

130 ....

1000 RM = INN - (I NT(INN 2)*2)

1010 IF INN < 20 AND RM = 0 THEN 1040
1020 OUTN = NN

1030 GOTO 1050

1040 OUTN = INN + 20

1050 RETURN

VWhen using subroutines in assenbly code, we may either

use the BSR instruction or the JSR instruction. The
BSR instruction is like the unconditional br anch
instruction BRA, but as well as branching it saves the
value of PC on the S-stack. The JSR instruction is

used when we have subroutines set up at known addresses
or when it is necessary to use indirect addressing to
call the subroutine.

Consi der how the above BASIC code might be
translated to assenbly |anguage. As we haven't vyet
covered the input and output of nunbers, let us assune
that there exists a subroutine GETNUM which inputs a
nunber to the A register and a corresponding routine
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PUTNUM whi ch outputs the A register, as a nunber, to
the screen.

JSR GETNUM : INPUT A

STA NN c INN= A

BSR CONVON : To convert nunber
LDA QUTN

JSR PUTNUM . PRNT A
* CONVON - Add 20 to odd nunbers < 20
CONVON  LDA NN

COVPA #20
BH EXT ; If INN > 20 then goto EXT
Bl TA #3$01 : Test bottombit of A

* If it is 0, nunber is even
BEQ EXIT
ADDA #20 : Add 20 to nunber

EXIT STA QUTN : and store in QUJIN
RTS ; return to calling code

The RTS instruction is used to return control to the
instruction which imrediately follows the subroutine
call. As OONVON is called above, the first |[oad
instruction LDA INN is redundant as INN is already held
in register A However, we don't optimse this by
renmoving the load instruction as the subroutine
speci fication does not require the programmer to store
I in register A before the subroutine call.

Notice also that the subroutine alters the val ue of

register A In general, subroutines should |eave the
states of registers exactly as they were when the
subroutine was called. Therefore, all subroutines

ought to have the follow ng structure.

Save registers used by subroutine on stack
Subr outi ne code

Restore register values from stack

Return

The subroutine CONVON may be adapted to reflect this
structure:

QONVON  PSHS A CC ;. Save A and CC on st ack.
LDA NN
COVPA #20
BH EXIT
Bl TA #$01
BEQ EXIT
ADDA #20
EXT STA QUIN
PUS A/CC PC ; Restore and return

Al the RTS instruction does is to pull PC fromthe S
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stack so it can be left out if PCis Pulled explicitly
when the saved registers are restored fromthe stack.
Thi s mechani sm of passi n(]; paraneters to and from a
subroutine in fixed nenory locations is not ideal. W
shall describe its deficiencies and introduce better
par anet er passing conventions in the follow ng chapter.

57 ARRAYS

Arrays are one of the nost comonly used data
structures where a sequence of storage elements is
given a nanme and particular elements in that sequence
are accessed by nunber. In this section, we show how
arrays of nunbers may be stored and accessed using
assenbl y | anguage.

In BASIC, the programrer nmay use one-dimensional
arrays which are made up of a linear sequence of
nunbers or two-di nensional arrays which, conceptuall?/,
may be considered as a table or matrix of nunbers. n
fact, two-dinensional arrays are also stored in the
conputer's nmenory as a linear sequence and the BASIC
s¥stem provides routines to map a row colum pair
(I,m, say, to the appropriate address n in the |inear
sequence. Two possible mappings which nmay be used by
the assenbly |anguage programrer are described later in
this section.

When using one-dinensional arrays in assenbly
| anguage, you nust know the address of the first
elenment in the array. You get this by associating a
label with a 'reserve store' directive as described in
section 4.3. This label identifies the so-called 'base
address' of the array. VW assune, in the renai nder of
this section, that is the base address of a one-
di mensional array of 8-bit nunbers and that MATR X is
the base address of a two-dinmensional nuneric array.

. I;I'hese may be set up using assenbler directives as
ol | ows:

NARR RVB 15
MATR X  RMB 100

The index registers X and Y are the mechani sm through
whi ch consecutive array elenents may be accessed. The
base address of the array is loaded into one of these
index registers and the auto increnent/decrenent
facilities used to sequence through the array. For
exanple, say NARR is nade up of 15 8-bit val ues and you
want to set all elenents to 0. In BASIC, you would
wite:

100 FCR | =
110 NARR()
120 NEXT |

1 TO 15 DO
=0
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Exactly the same assignments may be specified in
assenbly |anguage but there is no need for an explicit
counter variable.

LDX #NARR ; Put array base address in X
SETO CLR |, X+ ;7 NARR(X) =0: X=X +1

CWPX #NARR+15 ; Conpare X to base address+15.
* see if all elenents cleared

BLS SETO ; If not, goto SETO
* to clear next elenent

The availability of index registers makes array el enent
access a very efficient operation. Even when auto
increment or decrenment cannot be used to update the
i ndex regi ster, because the step is not one or two, the
LEA instruction may be used to perform arithmetic on
the index register.

For example, say the following BASIC code is to be
i mpl enented in assenbly | anguage:

100 FOR 1=3 STEP 3 to 15
110 NARR(1) = NARR(l - 1) + 1
120 NEXT |

Usi ng assenbly | anguage, there is again no need for an
explicit array index variable:

LDX #NARR + 2 ; X = base of NARR + 2

* As NARR+O is first elenent
* this refers to 3rd el ement
SETVAL LDA ,-X ;A = Previous el enent

| NCA A=A+ 1

LEAX 1, X ; X=X+ 1 to get back to
* address to be assigned

STA | X ; NARR(X) = NARR(X-1) + 1

LEAX 3, X : X=X+ 3

CWPX #NARR + 15 ; Are we finished?

BLS SETVAL If not, back to SETVAL

The use of index registers to hold the address of the
array element to be accessed is easy to inplenment for
one- di nensi onal arrays. However, when two-di mensional
arrays are used, the programrer nust devise a way of
storing the array as a linear sequence and nust invent
a mapping to convert a row colum address to an address
in that sequence. There are two techniques which are
commonly used for this conversion.

The first of these techniques stores the entire
array, row by row, in contiguous nmenory |ocations. So,
if an array is declared in BASIC as MATRI X(10,10) this
takes up 100 menmory elenments. The first 10 elements
are row 1, witten as MATRI X(1,*), the next 10 are row
10, MATRI X(2,*), etc. The position of an elenent in
row m say is found by finding where row m starts then
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addi ng the col um displ acenment to it.

The starting position of a particular row, the row
base, is conputed by multiplying the row nunber by the
length of the row As the row base of the very first
rowis the sanme as the array base address, we count row
nunbers from0. Therefore, to find the row base of the
sixth row, we actually rrultiplal the row length by five.
For exanple, MATRI X(6,*) would have a row base address
of MATRX + 50 (5 * row length) and the elenent
MATRI X(6,8) has the address MATR X +50+ 8.

An alternative storage technique for two-dimensional
arrays does not require array rows to be stored
consecutively nor does it require a multiplication to
conpute the row base address. Rat her, the row base
addresses are all stored separately in another array
called an Iliffe vector, naned after J. Iliffe, the
inventor of the mapping technique. This is best
illustrated diagrammatically as shown in Figure 5.1.

MATRIX itte Vector

Fig. 5.1 Using lliffe Vectors to implement 2-D arrays

To find out the row base address, the row nunber is
used as an index into this Iliffe vector and the



110

starting address of the row is returned. The colum
nunber is then added to this to conﬁute the actual
el enent address. The base address of the array is not,
in this case, the address of the very first array row

but is the address of the first elenent in the Iliffe
vect or.

The main disadvantage of wusing Iliffe vectors is,
obviously, the fact that the Iliffe vector itself takes

\bj\ﬁ precious nmenory | ocations. However, the flexibility
ich it affords inasmuch as all array rows need not be
in contiguous storage elements and the fact that a
multiplication is avoided in the address conputation
often outwei ghs this di sadvant age.

Both of these techniques of array storage are
illustrated below with assenbly [|anguage versions of
the follow ng BASIC code.

10 DI M MATRI X( 10, 10)
100 INPUT M
110 FORJ = 1 TO 10
120 MATR X(M N) = 0
130 NEXT J

When MATRI X is stored row by row in a linear sequence,
the above BASIC may be inplenmented in assenbly code as
follows. Assune that the subroutine GETNUM inputs a
nunber to the A register.

JSR GETNUM  INPUT M

* That is, get row nunber into A
DECA : Subtract 1 as count fromO
LDB #10 ; This is the row |l ength
ML ; D=A* Bie 10*(M1)
ADDD #VATRI X ; Add the matri x base address
TFR D, X ; Set up index register X

LDA #10 ; Use A to count assignments
NEXT AR , X+ : Zero elenent: X=X+ 1

DECA ; A'is counter register

BNE NEXT ; If A <> 0 goto NEXT

Wien the two-dinmensional array is represented using an
Iliffe vector, the array base NMATR X hol ds the address
of the first element of that vector.

JSR GETNWM ;A = row nunber

DECA Get displacenment fromarray base
LDX #NMATR X Put base address in X

LDX A X Index to load X with the row base

* taken fromthe Iliffe vector

LDA #10 Ais counter
NEXT AR , X+ Set elenment to zero
DECA
BNE NEXT . If all elenents not cleared

* go back to clear next elemnent



111

Notice, from this exanple, how the powerful indexed
addressing features of the M809 makes the conputation
of the row base very efficient indeed. In fact, both

techni ques of two-dinmensional array inplementation are
efficient on the M6809.

5.8 A MACHI NE CODE MONI TOR

Rat her than present a nunber of small exanples of
wor ki ng assenbly code programs, we have chosen to
illustrate the principles described in this chapter
with a single, substantial assenbly code program
However, we have witten this program in a structured
way so that it is made up of a nunmber of easily
under st ood routines.

The reason for adopting this approach is that we
want to present a program which is of use to the novice
assenbly code progranmer and which can help him debug
his own prograns. The program below is a so-called
"monitor' which provides facilities for the wuser to
exam ne the contents of specified nenmory addresses and
to change them by typing the revised val ue.

The nonitor issues a pronpt to the user and responds
to two commands:

(1) J - this neans junmp to the start of the user pro-
gram

(2) M <address> - this displays the contents of the
speci fied address.

Once an M command has been issued, the user may exani ne
subsequent addresses by typing any letter and nmay
exam ne the previous address by typing an 'up arrow
character. If the user types a value nade up of three
decimal digits or two hexadecimal digits preceded by a
'$' sign, this value is filled in to the current
addr ess.

To return to the program which called the nmonitor,
you nust type a 'BREAK character. A nunmber is
normally termnated with an 'ENTER character but can
be terminated early with any other character in which
case, the change is ignored

The sequence below is an exanple of a possible
di al ogue with the nonitor. User input is underlined

*M $1000

$1000 000 $00 255

$1001 001 $01 $FF

$1002 128 $80 2[ ENTER]
$1003 016 $10 [up arrow
$1002 002 $02 3$A+

$1003 016 $10 Jup arrow

$1002 002 $02 [ BREAK]
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The nmonitor programitself now follows. Do not worry if
you cannot wunderstand it conpletely on your first
reading. You nmay find it helpful to read Chapter 6 and
then cone back to this programfor further study.

» MONTCR - nenory examine and change system
* This programis intended to help with the
* devel opment and debuggi ng of assenbly |anguage
* prograns. It provides facilities for the
* user to input a nmenory address and display its
* contents. These contents may then be nodified
* by the user.
* Unl ess otherw se specified, all routines preserve
* all register values except CC and any registers used
* for returning results.
CRG 20001
LBRA DRAMON ; Entry point of the nonitor
I NTRO FOC "DRAGON MN TCR 1.0"
FCB 0 ; Termnator for string
xR EQU $0D
QVARK EQJ $3F
UPARON EQU $5E
BREAK EQJ $03
DOLLCH EQJ $24
STAR EQU $2A
CBLINK  EQU $8009 . Qursor blink routine
| NCH EQJ $8006 ; Keyboard input routine
QUTCH EQU $800C ; Qutput character routine

* |NECHO - read a character and echo it to screen

* Register inputs NONE

* Register outputs A - contains character input
I

I

NECHO P X B ; Save registers affected
NLOCP  JSR CBLI NK . Blink the cursor
JSR | NCH ; Scan the keyboard
BEQ | NLQCP :and wait for a character
JSR QUTCH : Echo the character
PULS X B, PC ; Restore registers and return
 QUTSTR - print string of characters
* Register inputs X - pointer to beginning of string
¥ Registers destroyed X A
¥ String nust be termnated with a null byte
QUTSTR LDA 0O, X+ ; Get character from string
BEQ ENDSTR ; Termnated by a zero byte
JSR QUTCH ; Qutput the character
BRA QUTSTR ;. and deal with the next one

ENDSTR  RTS
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* QUTCR - output a carriage return

* Register inputs NONE

QUTCR PSHS A ;. Preserve A
LDA #CR ; Load Carriage Return code
JSR QUTCH ; and send it
PULS A, PC : Restore and return

* OUTSP - output a space
x Regi ster inputs NONE
OUTSP PSHS A

LDA #%$20 ; Code for space
JSR OUTCH ; and output it
PULS A PC

READY - Pronpt user for new command

* %k X %

Regi ster inputs NONE
READY PSHS A

BSR OUTCR ; Take a new line
LDA #STAR ; before outputting
JSR QUTCH ;  pronpt character
PULS A, PC
*
* DOLLAR - pronpt for hexadeci mal val ue
*
: Regi ster inputs NONE
DOLLAR  PSHS A
BSR QUTSP
LDA #DOLLCH ;  Hexadeci mal pronpt
JSR OUTCH
. PULS A PC
* INHEXD - input a hexadeci mal val ue
*
* Register inputs NONE
* Register outputs A - if valid hex char then hex
* val ue el se character
* CC.V =0 if valid hex character
* = 1 if non-hex character
| NHEXD BSR | NECHO ; Read a character
CWPA #'0 ; and check the range
BLO | NHERR ; for "0" to "9"
CWPA # 9
BLS CHOSUB ; and convert if so
CVPA #A ; Could be "A" to "F"

BLO | NHERR
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cHCsUB

I NHERR
INEXIT

CWA # F
BH | N-ERR
SUBA #7
SUBA # 0
ANDCC #$FD
BRA INHXIT
CRCC #2
RTS

Make "A' to "F' follow "9"
Convert to nuneric val ue
Valid return

Error return, V bit set

* QUTHXD - Qutput hex digit as character

* Register inputs A - hexadeci mal val ue

; Mask off M5 4 bits
; Check for decimal digit

; Ato F offset
; Convert to character
; and output it

digit and convert to value

outputs A - decimal value if in range 0-9

- character if non-deci nal

VvV -

Oif valid input

=1 otherw se

Converts to nuneric val ue

digit as character

HONVAB - conbine hex digits into single byte

QUTHXD  ANDA #$F
OWPA #9
BLS ADDCHO
ADDA #1

ADDCHO  ADDA #' 0
JSR QUTCH
RTS

* | NDECD - input decinal

*

* Register inputs NONE

* Regi ster

*

*

*

*

INDECD BSR | NECHO
OWA # 0
BLO | NDERR
OWPA #' 9
BH | NDERR
SUBA # 0
ANDCC #3$FD
BRA INDXI T

INDERR  CORCC #2

INDKT RIS

* QUTDCD - out put deci nal

*

* Register inputs A - decinal value

QUTDCD  ANDA #$F
ADDA # 0
JSR QUTCH
RTS

*

*

* Register inputs A - new hex digit

*

*

B - existing hex digit

Regi ster outputs B -

new hex value = B*16+A
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HCNVAB STA O,-S : Save for |ater
ASLB ;. Mve LS 4 bits
ASLB ;. of B
ASLB ;. tothe
ASLB . M54 bits
ADDB 0, S+ ; Add in new hex digit
. RTS
* INHEXB - input a hexadeci nal byte
*
* Register inputs NONE
* Register outputs A - hex byte val ue
* CC.C =0 neans value is &K
* CCV = 0 neans that B contains |ast
* hex val ue i nput
* CC.V = 1 means hex byte termnated
* prenaturely and B hol ds
: character Tead in.
| NHEXB CLRB s lnitialise to O
BSR | NHEXD ; Read a hex digit?
BVS NONHEX
BSR HCONVAB ; yes, so add to byte
BSR | NHEXD ; Second hex digit?
BVS NONHEX
BSR HCNVAB ; yes, so add that al so
NONHEX  ANDCC #$FE ; Indicate K
EXG A B ; Return with A and B set up

RTS

* QUTHXB - output a hex byte as characters

* Register inputs A - contains byte val ue
*

QUTHXB

* ok Ok ok ok Kk F

MJULB10

PSHS A

LSRA ; Shift M54 bits

LSRA : toLS 4 bits

LSRA

LSRA

BSR QUTHXD ; and output the hex digit

LDA O, S ; Get original again

BSR QUTHXD ; M5 4 bits masked off by QUTHXD
PULS A PC . Return intact

MULB1O - multiply by 10

Register inputs B - value to be multiplied
Regi ster outputs B = B*10

QC.C = 0 neans result between 0-255
=1 result out of range

AR O,-S ; Oreate tenp on stack
ASLB ;. Bvaluate 2*B
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BCS MLXIT ; Too big?

STB 0,S ; Save as tenp result
ASLB ;. Bvaluate 4*B
BCS MLXIT ; Too big?
ASLB ;. Bvaluate 8*B
BCS MLXIT ; Too big?
ADDB 0, S ; Evaluate (2*B)+(8*B)
* |f this is too biga result Cwll be set
MULXI T LEAS 1,S ;  Rel ease tenp.
. RTS
+ DONVAB - conbine deci mal val ues
* Register inputs A- new decinmal digit
* B - old decinal value
* Register outputs B - result = B*10 + A
* CC.C=0 - result in range 0-255
X =1 - result out of range
DCNVAB PSHS A ; Save register
BSR MULB10 ; B:=B*10
BCS DONXIT  ; Too bi g?
ADDB 0, S ; B =(B*10) +A
I*DCNXI T PULS A PC ;. Restore and RTS
* INDECGB - Input decinal byte val ue
* Regi ster inputs NONE
* Register outputs A - input value if valid
* CC.C =0 value in range 0-255
* =1 value out of range
* |f CCV =1 then nunber termnated early so nust
* be in range 0-255. B holds last converted digit
© of all 3 typed otherw se set to termnator.
| NDECB CLRB ; Initialise byte
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCN\VAB yes, add to byte

NONDEC  ANDCC #$FE
IDBXIT EXG AB

*

BCS IDBXIT Too big, so |eave C set
Result is in range 0 - 255

Return registers

RTS
QUTDCB - output byte as 3 digit decimal val ue



* Regi ster
*

OuUTDCB

i nputs A -

PSHS D

TFR A B
CLRA

NXTHUN

CVvPB #100

BLO TRYTEN
I NCA

SUBB #100
BRA NXTHUN

TRYTEN

BSR QUTDCD

CLRA

NXTTEN

CVPB #10

BLO TRYONE
I NCA

SUBB #10
BRA NXTTEN

TRYONE

LBSR OUTDCD

CLRA

NXTONE

CVPB #1

BLO OUTONE
I NCA
DECB
BRA NXTONE

OUTONE

LBSR OUTDCD

PULS D, PC

HOONVX -

Regi st er

E o I

Regi st er

HCONVX

contains byte to be output

Add hexadeci nal

i nputs A -

STA O,-S

EXG X, D
ASLB

ADDB 0, St+
EXG D, X

I NHEXW -

Regi st er
Regi st er

* ok ok ok ok Ok

i nput

new

digit

Both A and B used
Ais to be used in sub.
the 100s digit

Cl ear
Any 100s?

yes,

and try again
Cut put

Any 10s

yes,
Subtract 10
and try again
Cut put
Now count
Any 1's

yes,
Subtract 1

and try once nore

Final digit

Restore and return

to X

hex digit
X - old hex val ue
outputs X = X*16 + A

To add

Save away for
So we can do arithnetic
This perforns an ASL

on the D register

SO update digit
Subtract a 100

the 100s digit
Set up for 10s

so update 10 digit

10s digit
the 1's

update 1's digit
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Have now space in LS 4 bits

hex word (address)

May be up to 4 hex digits

i nputs NONE
out puts X -
CC. Vv

hex address val ue

= 1 address term nated

in new hex digit
Restore D and return X
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— ok x * %

NONHW

¥

CCV =20 full 4-digit address
read in
CC.C= 0 value in range O FFFF

PSHS D ;. Save fromharm
LDX #0 : Initialise address
LBSR | NHEXD ; Read hex digit?
BVS NONHW

BSR HOONVX ; yes, add to X
LBSR | NFHEXD ; Read hex digit?
BVS NO\HW

BSR HOONVX ; yes, add to X
LBSR | NHEXD ; Read hex digit?
BVS NONHW

BSR HOONVX ; yes, add to X
LBSR | NHEXD ; Read hex digit?
BVS NO\HW

BSR HOONVX ; yes, add to X
ANDCC #$FE : Result valid

PULS D PC . Restore and return

* QUTHXW - output hex word as 4 hex digits

* Register inputs X - value to be out put

*

QUTHXW  PSHS D

* Ok ok ok F X

MOOMND
EXAM N

* A non-digit has been typed, chec

TFR X D . D := hex word

LBSR QUTHXB ; Qutput M5 byte first (A
TFR B A

LBSR QUTHXB ; followed by LS byte (B)
PULS D, PC

MOOMND - menory exam ne and change

Regi ster inputs NONE
Regi sters destroyed X, A CC

Interprets user commands as defined in introduction

LBSR DCLLAR ; Pronpt for hexadeci nmal

BSR | NHEXW Expecting an address (hex)
LBSR QUTCR Prefix the address

LBSR DOLLAR witha"g"

BSR CQUTHXW foll oned by the address
LBSR QUTSP separate by a space

LDA 0O, X Get contents of that address

LBSR QUTDCB Shown as deci mal val ue

LBSR DALAR and foll oned by the

LBSR QUTHXB hexadeci mal val ue

LBSR QUTSP Then a space

LBSR | NDECB Assume deci mal change

BCS QUERY Too big a nunber?

BVC CHANGE If K LUSt change the byte

for hex prefix
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CvMPB #DOLLCH ;  Hex nunber?
BNE CHKCR
LBSR | NHEXB ; yes, so get the rest
BVC CHANGE ; If OKjust change the byte
* At this point an early end to the nunber has
* been typed. Only CR (ENTER) will be all owed.
* Note: If only a CRis typed then the byte is
* cleared to zero!. Be careful!
CHKCR CVMPB #CR ; CR (ENTER) ?
BEQ CHANGE ; yes, then change the byte

Check for the "up arrow' key since this
* returns to the previous |ocation.
CMPB #UPAROW ;o "up arrow'?
BEQ LSTLOC ; yes, move back to |ast
Now check for the BREAK key since this exits
* the Mnitor

CVMPB #BREAK ;  BREAK in?
BEQ MCDXI T ; yes, then exit
NXTLOC LEAX 1, X ; Move location address on
BRA EXAM N ; and repeat
LSTLOC LEAX -1, X ; Back up location address
BRA EXAM N ; and repeat
CHANGE STA 0, X ; Make the change
CWPA 0, X ; and check afterwards
BEQ NXTLOC ; OK?, move on if so
QUERY LDA #QVARK ; Made a m st ake.
JSR OUTCH ; SO report it.
BRA EXAM N ; Don't do anything untoward

Il/CDXI T RTS Ret urn

* JCMND - junp to start of program
*
: Regi ster inputs NONE
JCOVND LBSR DCOLLAR ; Put out $ pronmpt
LBSR | NHEXW ;  Get hex address
BVS JERR ; MJUST be all 4 hex digits
JMP 0, X
JERR RTS ; Only get here on error
*
* DRAMON - main driving routine
*
* Register inputs NONE
* Registers destroyed X, A, B, CC
DRANMON LBSR QUTCR ; Prompt on a new line
LEAX | NTRO, PCR ; Qutput intro.
LBSR QUTSTR
NXTCNVD LBSR READY ; Pronpt the user
LBSR | NECHO ; Read the command
CVPA #' M ; Menory exam ne and change?
BNE TRYJ
BSR MCOWVND ; yes, then obey it

BRA NXTCMD ; and repeat
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TRYJ

TRYBRK

OWPA #J
BNE TRYBRK
BSR JCOMN\D
BRA NXTOVD
OWA #BREAK
BNE NXTOMVD
RTS

Is it the Junp command?

no, then check for BREAK
yes, so obey it

but don't expect to get here
Is it the B key?

no, then pronpt again

yes, return to caller



Chapter 6
Subroutines and strings

Wen we try to solve a problem we do not go directly
fromthe general statement of the problemto a detailed
solution unless the problem is very trivial indeed.
Rather, we split the problem into a sequence of sub-
probl enms and work out the individual solutions to these
snmal ler problens. The sub-problem solutions are then
integrated and coordinated to form the general problem
sol uti on.

Wien a problemis intended for conputer solution, we
can use exactly the same approach. he overall problem
solution is a conputer program but, rather than
generate this as a nonolithic code sequence, it can be
nade uP of calls to subroutines. Each subroutine is
the solution to a particul ar sub-,orobl em By adoPting
this approach, we reduce the overall conplexity of the
program because we never have to understand or think
about any nore than one subroutine at any one tine.

The idea of a subroutine as a self-contained section
of code which can be initiated from el sewhere in the
program was one of the earliest advances in conputer
progranm ng. Subroutines are an essential tool for the
proPranma_r as they allow himto create 'black boxes'
I nplementing particular functions. Onhce these have been
witten and tested, the programmer need not be bot hered
how they work as long as he knows their function and
how to use them

To nake the nost effective use of this problem
solving method, the programm ng |anguage which we use
nust allow us to «create subroutines which are
i ndependent of their environment. Unfortunately, BAS C
subroutines are very primtive indeed and are not truly
self-contained. Their disadvantages can be summarised
as follows:

(1) BASI C subroutines cannot be nade independent of
their environment because the only way of passing
information to and returning information from a
subroutine is through its environnent. That is,
program variables nmust be used to pass inforna-
tion to and from the subroutine. This neans that
BASI C subroutine libraries cannot be created be-
cause both the subroutine and the program nust
‘agree’ on what variables should be wused for
passing input and output paraneters.

121
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(2) There is no way, in BASIC, for a subroutine to
have a conpletely private data area which no
other subroutine nay tanper with. A private or
| ocal variable area is essential if the
subroutine is to be self-contained and if the
programmer is to be sure that a call of the
routine always does exactly what's expected of
It.

(3) The BASI C programmer cannot give his subroutine a
nane which reflects its function. Rat her, he
must refer to it by a meaningless |ine nunber.
When a program has nany subroutines, it is
difficult to discern what operations are
inpl emented by a sequence of subroutine calls,
especially i the program is not properly
comment ed.

The subroutine facilities available to the assenbly
| anguage  progr anmer are actually SIightIXt | ess
primtive that BASIC S subroutine nechani sm | east
In assenbly |anguage, a mmenonic nane rather than a
nunber can be given to a subroutine. As in BASC
there are no  built-in nechanisns for passi ng
information to and from a subroutine or for
establishing local data space.

However , the flexibility of assenbly |anguage
programmng is such that the programrer nay establish a
set of conventions which allow local data areas to be
created and which allow paraneters to be passed to and
from a subroutine wthout wusing global variables.
These conventions provide a nore powerful, effective
and safer nechanism for wusing subroutines than that
avail able to the BASI C programer.

In this chapter we show how the Ms809' s architecture
is well suited to the inplenmentation of self-contained
subroutines and we describe a very general way of
declaring and calling subroutines. W also describe a
subroutine calling technique which can be used when
execution speed is the paranmount consideration and we
explain how to construct subroutines which are position
i ndependent. The final sections of the chapter discuss
techniques for representing and manipul ati ng character
strings and we show how assenbly |anguage subroutines
may be integrated with BASIC prograns.

6.1  ASSEMBLY LANGUAGE SUBRCUTI NES
VW have already shown in section 56 how the BASC

GBWB and RETURN staterments can be inplenented in
assenbly language wusing the BSR  JS and RIS
i nstructions. In that secti on, we showed how
paranmeters could be passed to and from subroutines
using shared global variables but this is not a

recommended technique. Furthernore, if it is inportant
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to produce very efficient code, using shared variables
for parameter passing has the additional disadvantage
that it takes time to set up and access these shared
vari abl es.

In many cases, there is no need for separate
variables to be used for parameter passing. Rather, if
one or two paranmeters only are to be passed to and from
the subroutine, it is often possible to pass their
val ues or addresses in registers. This saves both the
calling program storing register values and the
subroutine reloading these values into registers.

The use of registers for paraneter passing al so has
the advantage that the parameters do not take up nenory
space and that the inpermenent nature of register
val ues enphasises that subroutine paraneters are
di stinct from other permanent program vari abl es.

Program 6.1 shows how the A and X registers can be
used to pass paranmeters to and froma subroutine.

* SQUARE - conpute square of input paraneter
*
* Register input A - positive nunber to be squared
* Register output X - square of input
* Method used 1s to add n to itself n tines
SQUARE PSHS B ; Save B register
TFR A B ;. B=A
LDX #0 ;. Qear X
SQOP  ABX : X=X+ B
DECA : Use A as counter of the
* nunber of adds
BNE SQLQOCP
TFR B A . Restore value of A
PULS B, PC . Restore B and return

Program 6.1  SQUARE - conpute square of input

Notice that a return from subroutine instruction, RTS,
is not required as the program counter is explicitly
restored using a PUS instruction.

To call this subroutine, the input parameter must be
get up in register A A possible calling sequence night
e:

LDA #28 ; Conpute 28 squared

PSHS X : Save value of X as it is
* destroyed by SQUARE

BSR SQUARE : Call routine

STX RESULT : Store result of call

PULS X . Restore X

Notice how the S stack is used to save register values
which are subsequently restored. O course, the value
of X before the call of SQUARE is not necessarily
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preci ous. If this is the case there is no need to
save it before the call and restore it after the
subroutine has been execut ed.

Any of the registers A, B, X Y, or Unay be used to
pass paraneters to and from subroutines. However, the
S register is never used for this purpose because of
its role as a system stack pointer. As the return
address, the value of PC when the routine is called, is
stacked, it is inportant that the value in S is not
corrupted otherwise a proper return from the subroutine
i s inpossible.

In some subroutines it is useful to return an error
i ndi cator specifying whether or not the subroutine has
succeeded in its task and the best way to do this is to
make use of the OC register. The programmer nay use
CC.Vor CCCas error indicators or, alternatively, the
settings of GC.Z and CC N nmay indicate that an event
has or has not occurred.

V¢ have already seen an exanple of how this latter
net hod can be used to determne if an input routine has
returned a character. If a character has been input,
CC.Z is unset otherwise CC.Z is set. Therefore, the
following code loops until a character is input:

CETCH JSR I NCH ; CGall input routine
BEQ CGETCH

When using the CC register to return results from a
subroutine, the ANDCC and CRCC instructions rmay be used
to set and unset particular bits in that register.

Using registers for subroutine input and output
paranmeters is an efficient parameter passing technique
which should be used when subroutine calls nust be
executed as quickly as possible. However , this
technique requires that the programrer knows exactly
what registers nust be set up when the subroutine is
called and what registers are used by the subroutine to
return results. Typically, different subroutines have
different conventions in this respect dependi n% on the
nunber and type of input paranmeters and on whether they
return one or nore results. The programrer rnust know,
in detail, the conventions for each subroutine before
he can nake use of it.

If there are only a few subroutines used in a
program it nay be fairly easy to nmenorise such
details, but in a large program where there mght be
tens or even hundreds of subroutines, this is not
possi ble. Furthernore, the programrer nmay w sh to build
up a library of wuseful subroutines to be included in
his prograns as they are required. It is obviously a
good idea to have all the subroutines in the library
used in a consistent way so passing paranmeters in
registers is not really suitable.

There are two different general nechani sns which can
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be devised to support subroutine paraneter passing.
The first technique, which we do not describe in
detail, is to allocate a specified paranmeter area for
each subroutine and store the addresses of the
paraneters in that area. Wen calling the subroutine,
this area is set up imrediately prior to the subroutine
call. The address of the paraneter area is assigned to
an agreed register such as the Y register, and indirect
indexed addressing is used to access the subroutine

par anet ers.

This technique works well in nost cases but cannot
sugport_ so-called recursive subroutines. Recur si ve
subroutines are subroutines which contain an enbedded

call to thenselves. Athough this may seem an unusual
idea to the programrer who has only ever programred in
BASIC, recursion is very useful in nany situations as
it allows you to wite conpact prograns which, wth
practice, are easy to understand. Readers who wish to
experinment wth recursive programmng should consult
t ext books which describe data structures such as lists
and trees to see how recursion is used.

The second generalised technique of subroutine
paraneter passing can handle recursive routines. It
makes use of a stack to pass paraneters to and return
results from subroutines. This technique can be
i npl emented very efficiently on the M809 because of
its built-in stack rmanipulation instructions. It is
described in detail bel ow

6.1.1 Paraneter passing using a stack

The MB809 processor is designed so that two stacks nay
be used, at the sane time, by the assenbly |anguage
programmer. One of these stacks, the hardware or system
stack, is referenced via the S register and is always
in existence as it is used to hold the program counter
when a subroutine is called. The user stack, or U
stack, is referenced via the U register and may or nay
not be used depending on the application being
pr ogr amred.

A paraneter passing nechanism can be devised which
uses the Sstack to hold information such as the
subroutine return address and which uses the Ustack to
hold subroutine paraneters. This works perfectly well
and is often used. It does, however, require
consi derabl e housekeeping by the calling and called
routine to mnmake sure that the stacks are always
consi stent.

The technique which we describe below uses only a
single stack, the S-stack, but uses two stack pointer
registers, S and U As well as being useful to the
assenbly |anguage progranmmer, this technique of
subroutine paraneter passing is that used by structured
hi gh-1 evel |anguages such as Pascal .

To understand this paraneter passing nethod, we nust
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introduce the idea of a stack frame. A stack frane is
a data area which is set up on the stack when a
subroutine is called. The exact nunber of bytes making
up a stack frame depends on the nunber of subroutine
paraneters, the registers saved by the subroutine and
the local data space required by the subroutine.
Figure 6.1 is a diagram of a stack frame in its nost
general form

Fig. 6.1 Stack frame organisation

The saved registers are those registers which are
nodified by the subroutine. The return address is the
val ue of PC stacked by the BSR or JSR instruction.

The subroutine paraneter area is set up by the
calling programw th the values of the subroutine input
parameters and, if a result is returned by the
subroutine, the calling program reserves a location on
the stack for it.

To illustrate how stack frames are used, consider
the SQUARE subroutine described wearlier in this
chapter. This is a subroutine which we nmght wish to
i npl ement as a function which returns the square of its

par arnet er . Assuming that we wuse the stack for
paraneter passing, we would call the function SQUARE
using the follow ng i nstruction sequence:

LEAS -2, S ; Decrement S by 2.
* As stacks in the M809 grow downwar ds
* this leaves a 2-byte "hole' in the
* stack for the result

LDA N ; A = nunber to be squared

PSHS A ; Put parameter onto the stack

BSR SQUARE : call SQUARE

The call of SQUARE pushes PC onto the S stack. The
subroutine SQUARE flrst Eushes the registers which it
uses onto the stack and then sets up a register so that



127

i ndexed addressing nay be used to access the subroutine
parameters and result. As the X and Y registers are
often used for array accessing, it is best to use the U
regi ster as the stack index register set to the base of
SQUARE' S stack frane.

Gven that the subroutine SQUARE saves the registers
A, B, X U, and CC, the stack structure after
subroutine entry is show in Figure 6.2.

decreasing

addresses

Result Hi

Result Lo
Fig. 6.2 Stack structure after entry to SQUARE

In general, a called routine should save the val ue
of the U register then reset it so that it points to
the current stack frane. It is inportant to ensure
that the U register is set to the same relative
position in the stack frame for every subroutine but
the particular |ocation chosen does not matter a great
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deal. In our exanples, the U register is set so that
it refers to the hi-byte of the subroutine return
address on the stack.

The U register is assigned after the registers have
been saved using an LEAU instruction. As S points at
the top location on the stack, the stack address
assigned to U is conputed using the S register value
and the nunber of register bytes stacked.

The code inplenenting the subrouti ne SQUARE is:

* SQUARE - returns the square of its input

*

SQUARE PSHS A B U X CC

LEAU 7,S set Uregister

LDA 2,U ; Get paraneter from stack
* it is 1mrediately bel ow
* the return address
TFR A B ; Use repeated addition to
LDX #0 ; square N
SQ.OCP ABX : X=X+B
DECA ;A counts adds
BNE SQLOCP
STX 3, U : Store result
* Result is always i mredi ateIK
* bel ow paraneter on the stac
PUS A B U X CCPC ; Restore and return

Program 6. 2 SQUARE with stack paraneter passing

O return fromthe subroutine, the S register is set so
that it points to the subroutine paranmeter on the
stack. As this is no longer required, the calling
program nust increnent S to discard the paraneter or
par anet ers. After this nodification of S S then
refers to the result returned by the subroutine.

The conplete «call/return sequence for SQUARE is
t her ef ore:

LEAS -2,S ; Space for result
LDA N
PSHS A ; paraneter onto stack
BSR ccall routine
LEAS 1,S ; discard paraneter
PULS D ; result in Dregister
* for processing, store, etc

Qoviously, if the subroutine does not return a result,
there is no need to reserve space on the stack for the
result. It is, therefore, very inportant that the
programrer ensures that each subroutine has an
associated comment at its head which states the size,
in bytes, and the type of any result. This is
essential so that the correct call/return sequence may
be used for that routine.
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In general, the call sequence for a subroutine where
the stack is used for paraneter passing is as follows:

Reserve space, if necessary, for subroutine result
Eval uate paraneters and store on S stack

Call subroutine

D scard paraneters

Retrieve subroutine result from the stack

The called routine nust have an entry and exit sequence
as foll ows:

Save U register and other registers as necessary
Set up U as stack frane register

<Body of subroutine>

Restore registers including PC

An inportant advantage of wusing this technique of
paraneter passing is that the stack may al so be used as
a local variable area for the called subroutine. These
local variables are accessed using indexed addressing
via the Uor S registers.

Rather than allocate specific nenmory locations as
private working store for the subroutine, it is
possible to use stack locations for this purpose. This
store is allocated dynanmically on entry to the
subroutine and de-allocated on exit from the routine.
Thus store is only allocated when it is required and
need not be set aside permanently for subroutine Iocal
vari abl es.

Program 6.3 takes an array base address and an array
length as parameters on the stack and returns the
maxi nrum and mni mum values of that array as results.
It uses local variables to hold the maxi numand m ni num
val ues which have been determned so far.

MXM N - determines MAX and MN array val ues

Results are left on the stack in space |eft
by calling routine.

* k% % *

MXMN PSHS UAB

LEAU 4, S ; Upoints at return address

LDA 2, U ; Array length in A

LDX 3, U ; address in X

LDB , X+ : 1st elenent in B

PSHS B

PSHS B : Push locals onto stack
* Both MAX and MN initially set up
* to be the value of 1st el enent
* MAX=st ack(S), M N=stack(S+1)

DECA

BEQ DONE ; If only one elenent, all done

MWLOCP LDB , X+ ;. Array elenent in B
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; Conpare with MAX

; If greater, re-assign MAX
owB 1,S ; Conpare with MN

; Value greater, go on to next

STB 1,S ; O herw se re-assign MN
BRA ELOCP

NEVWAX STB , S ; Re-assign MAX

ELOCP DECA
BNE MMLQOCP

DONE LDA |, S+ ;. Maxi num val ue
STA 5, U ; into result space
LDA , S+ : M ni num val ue
STA 6,U ; into result space

PULS UABPC ; Restore and return

Program 6. 3 MYXMN - find naxi num and m ni num of
array

This technique of local variable allocation allows
r ecur si ve subrouti nes, subrouti nes whi ch cal
thensel ves, to be inplenmented. Wen a subroutine calls
itself, a conpletely new local variable area is set up
on the stack and the data area of the calling routine
is not destroyed.

- W illustrate this using a recursive routine which,
given an input paraneter N returns the Nh Fibonacci
nunmber. Fibonacci nunbers are nunbers in a sequence

where the value of a given nunber is con‘ﬁut ed by adding
the previous two nunbers in the list. The first values
in the sequence are 0 and 1 so the first 10 Fi bonacci
nunbers are:

01123581321 34

Fi bonacci nunbers are not just mnathematical oddities
but have practical uses in sorting large data files
held on magnetic tape. Readers interested in how they
are wused should consult a textbook on sorting
t echni ques.

A general forrmula for conputing the N h Fi bonacci
nunber s recursive:

if N=1 then
FIB(N =0

el se
if N=2 then

FIB(N) = FIB(N-1) + FIB(N2)

So, if the 5th Fi bonacci nunber is required, this
formul a woul d be eval uated as foll ows:

FI B(5) FI B(4) + FIB(3)
FIB(3) + FIB(2) + FIB(2) + FIB(I)
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= FIB(2) + FIB(l) +1+1+0
=1+0+1+1+0
=3
The assenbly code routine below takes an 8-bit input
paraneter N and returns a 16-bit result which is the
Nt h  Fi bonacci number . As BASIC does not support
recursion, we cannot first translate our |[ogical
solution above into BASIC but nust go straight to
assenbly code.
* FIB - Computes Nth Fibonacci nunber
*
* Result left on stack in location P+1 where P
* is parameter address
: Set up equates to refer to stack |ocations
FRES1 EQU 3 ; Result
FPARL EQU 2 ; Paraneter
FI BL1 EQU -5 ; Local wvariable
FI BL2 EQU -7 ; Local wvariable
FI B PSHS A U, CC ; Save registers
LEAU 4, S ; Set stack frame register
LEAS -4, S ; Space for local variables
* FIBL1 and FIBL2
LDA FPAR1L,U ; Get input paraneter
BLE ERRL ; If it is not positive, error
CVPA #1 ; is it 1st Fi bonacci nunber?
BNE FI B2 ; If not, try the second
LDD #0 ; D= FIB(Il)
BRA EXIT ; Get out of routine
Fl B2 CVPA #2 ; Is FIB(2) required
BNE FI BN ; No, compute FIB(n)
LDD #1 ; D= FIB(2)
BRA EXIT ; Get out
Fl BN LEAS -2, S ; Get stack space for result
DECA ; FIB(N-1) is being computed
PSHS A ; Parameter for recursive call
* of FIB
BSR FI B ; Call FIB
LEAS 1,S ; Discard paraneter
* S now refers to result
PULS D Pull result into D
STD FIBL1,U ; Store D into local variable
* Now call Fib again to conmpute FIB(N-2)
DECA 7 A= N- 2
LEAS -2, S ; space for result
PSHS A ;  stack paraneter
BSR FI B ; and call FIB recursively
LEAS 1,S ; discard paraneter
PULS A B ; D = FIB(N-2)
STD FIBL2,U ; Assign to |ocal
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+ Now add locals to get Fibonacci nunber

LDD FIBL2, U
ADDD FIBL1,U ; D = FIB(N1)+FI B(N2)
BRA EXIT ; get out

ERRL LDD #-1 . D=-1if error

EXIT STID FRESL, U Store Din result space
PULS A U CC PC : Restore and return

Program 6.4 FIB - conpute nth F bonacci nunber

This routine can be optimsed by using the space on the
stack reserved for the result of FIB as local working
store and by renoving sone redundant |oad instructions.
VW leave this optimsation as an exercise for the
reader.

You will probably have to think quite hard to
understand exactly what the FIB program is doing. You
may find it helpful to draw a diagram of the stack
structure and see how it expands and contracts as the
routine is called recursively. Wilst this exanple
denonstrates the power of assenbly |anguage, it also
shows that, if you try to do conplex things, the code
to inplement themcan be difficult to understand!

The generalised parameter passing and |ocal variable
allocation techniques which we have described are
useful when you are witing large prograns with many
subroutines or when you are building a subroutine
library. For fairly snall assenbly |anguage prograns
their generality can be confusing and it is better to
adopt a sinpler parameter passing technique.

However, we do recommrend that you should avoid the

allocation of fixed |ocal variable space for
subroutines. In nmany cases, Yyou can use registers as
local work areas and this is often the nost efficient
approach. In other cases, where this is inpossible,

you should use the stack as a local work area. You nay
either set up the U register as a pointer to this area
or nmay use S register relative addressing to access
local subroutine wvariables. These techniques are
illustrated in sone  of the character string
mani pul ati on routines which are described later in this
chapter.

6.2 CHARACTER STRI NGS

W have described how BASIC arrays can be set up using
the FCB, FDB, and RMB directives. These arrays can be
accessed using index registers with the array length
held in an accumulator register. Natural ly, these
arrays can be arrays of characters and this is one way
of carrying out character manipulation in assenbly
| anguage.

However, the use of fixed-length arrays to hold
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character strings neans that the decision as to the
nunber of characters in a string nust be nmade when the
array holding the string is declared. In this respect,
character arrays are not like BASIC S character strings
where the nunber of characters in a string may vary
fromO to 255. Wen this flexibility is required, it
is not usual to inplenent character strings as fixed-
I ength arrays.

In this section we describe how the assenbl
| anguage  progr amrer may  set up variabl e-| engt
character strings and we explain how various string
mani pul ati on operations can be inplenmented. In section
6.3 we provide listings of a package of subroutines
whi ch inplement character string operations.

In order to inplement variable-length strings the
programmer nust set aside a large data area for string
storage where the actual characters making up the
string are kept. The string name is associated with a
2-byte area which holds the address of the string
characters within the string storage area.

The fundarent al operations which are normally
allowed on character strings are as foll ows:

(1) Conpari son
Character strings are conpared for equality

(2) Assi gnnent
One character string is assigned to another

(3) Cat enati on _
Two character strings are put together (catenat-
ed) to forma longer string

(4) Substring selection
Part of a character string (a substring) is
sel ected

(5) Length conputation
The nunber of characters making up a string is
conput ed

There are also other operations which may be carried
out with character string operands such as determ ning
the ASCl value of a particular character and
converting nuneric strings to integers and vice-versa.

G ven that all character strings are to be stored in
a common string storage area, the first decision that
the programrer nust make is how to represent strings so
that the length of the string can be determned. Al of
the string operations listed above need to know the
string length in order to operate correctly.

Pr obabl y t he si npl est vari abl e-1 engt h string
representation technique is to associate an explicit
"end-of -string' character with each string. Thi s
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character is catenated with the characters naking up
the string so that the storage space required for the
string is the length of the string plus one byte.
Usual 'y the null byte, hexadecinal 00, is used as the
string termnator. Therefore the string 'H THERE
woul d be stored as 'H THERE<NULL>'

There are two advantages of using this technique of
vari abl e-1 ength string representation.

(D There is no limt to the length of the strings
whi ch may be represented.

(2) Strings whose length cannot be predicted can be
store in this way as t he strin
nodi fication (adding the null byte) is carrie
out after the entire string is known. This neans
that the technique is very useful for represent-
ing strings which are input from the keyboard or
some other device. oviously, the length of such
strings is not known in advance.

The disadvantage of this representation technique is
that string length determination requires a programto
explicitly count the string characters wuntil a null
byte is detected. This takes tine and when a program
does a lot of character manipulation, this tine penalty
may be unaccept abl e.

An alternative technique for string representation
is to hold the length of the string as the very first
byte of the string. For exanple, the string 'H THERE
would be stored as <8>H THERE This neans |ength
conputation is very fast but has the disadvant ages t hat
the maximum string length is 255 characters and that
the length of the string nmust be known in advance
before it can be entered in the string store.

As character strings are represented as a 2-byte
reference to the string store, the assignment of one
character string to another is a very efficient
OEeration. There is no copying of the string
characters thensel ves. Assignment  sinply invol ves
assigning one string reference to another. However,
this can result in nuch wasted store. The reason for
this is best illustrated by an exanpl e.

Assune that the variables STRl1, STR2, and STR3 have
been set up wusing an FDB directive and have been
initialised to refer to strings as foll ows:

STRL -> 'H THERE
STR2 -> ' WELOOWE
STR3 -> 'HELLO

If STRL is assigned to STR2, this means that STR2 now
points to the string 'H THERE and the string
"WELCOME is no longer referenced by anything. However,
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the space occupied in the character store by this
string cannot nmagically disappear so, if many string
assignnents are executed, the string store soon fills
up wth such inaccessible 'garbage'.

This is a general problemwhich is inherent in all
systens where variable-length strings are allowed. The
BASIC programmer has the advantage that the BASIC
system has an in-built 'garbage collection' routine

ich finds all wunreferenced strings in its string
store and marks the store which they occupy as
reusabl e. Garbage collection is a falrly conplex
operation and the interested reader should refer to a
conput er science textbook which covers data structures
for a description of various garbage collection
al gori t hns.

Rat her than di scuss garbage collection, we describe
how routines can be witten to allocate and deal | ocate
space in the string storage area so that the amount of
arbage is mnimsed. The first routine described
elow is called GETSP. This takes one paraneter, sa
n, and returns an address in the string storage area o
n consecutive unused bytes. The second routine Dbel ow
is FREESP, which is called after string assignnment, to
mark a group of bytes as being available for re-
al | ocati on.

Let us assunme that the string storage area is called
HEAP and is set up using the follow ng directive:

HEAP RWB 4096 ; String storage area

Furthernore, let us assune that we use an explicit
length byte at the start of each string. |If this byte
has a value between 0 and 254, this Is taken as the
string length. If the length byte is 255, the
following two bytes hold a nunber which is the nunber
of unused bytes in that area and therefore available
for string allocation.

Figure 6.3 shows part of HEAP wth intermngled
character strings and free space. Initially, HEAP is
set up so that the very first byte (byte 0) is 255 and
bytes 1 and 2 hold the 16-bit integer 4096 indicating
that the entire storage area 1s available for
allocation. The routine GETSP starts at the begi nning
of HEAP searching for a byte whose value is 255. Wen
such a byte is found, GETSP checks if the nunber of
free bytes available is enough to satisfy its request.

If so, CGETSP clains what it needs from this free

space and narks the renainder as free. If the free
space is not sufficient, CGETSP goes on to find the next
byte whose value is 255. If no free space is found

before the end of the string storage area, CETSP
returns an error indicator showing that it is unable to
satisfy the request for space.
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T 0 B R | G H T 0 N | 255 0 12

255 | 0 10 0 255 0 19

Fig. 6.3 String storage area organisation

The code for the routines GETSP and FREESP is ﬁrovi ded
in section 6.3. For the monent, let us assume that they
are available and have the follow ng specifications:

GETSP - gets space on heap

Regi ster input B - nunber of bytes required
Regi ster outputs Y - pointer to space requested

CI;V=0i; no space avai*,able
CCV=1If request satistied

FREESP - returns free space to heap

Regi ster input X - address of space to be freed
Register output CCV =0 if invalid address
CCV=1if space freed

$ ok ok Kk KKK ok ok ok

G ven these routines, the initialisation of strings can
be inplenented as shown below Assunme that a string,
termnated by a null byte, has been read into an input
buffer area called INBUF. The routine STINT takes the
address of INBUF as its parameter in register X and
returns in register Y the address of the initialised
string on the heap. The assenbly code for this routine
is:

STINT - Initialise a string

t buffer address
ing address in heap
O1f error

1if noerrors

* ok ok * k *

Register input X - inpu
Regi ster outputs Y - str
V=
V=
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STINT PSHS X, A, B, PC ;. Restore and return
CLRB : Bis counter
holding length of string to be
initialised

TFR X, Y ; Save value of X
STCNT LDA |, Y+ ; Get string byte
BEQ FSPCE ; If null byte, stop count
| NCB ; Otherwi se, count it
BRA STCNT
FSPCE I NCB ; To account for length byte
BSR GETSP ; get space
BVC XIT No space found - error
DECB No of characters in string

STB , Y+ Store length

BSR CPSTR String copy -see exanples

ORCC #2 Set success flag

LEAY -1,Y To point at length byte
XIT PULS X A B Restore and return

Program 6.5 STINNT - string initialisation

Fur t her exanpl es illustrating string manipul ation
techni ques are provided in the follow ng section.

6.3 STRI NG MANI PULATI ON ROUTI NES

This section is entirely taken up wth |Ilistings of

routines which carry out string manipulation. Al the

exanples here are witten in a position-independent way

and may readily be incorporated with your own prograns.
CHKHP - check string validity

*
*
* Register input X - string address
*
*
*

Regi ster output CC.V = 1 if string in heap
CC.V =0 if not in heap

CHKHP PSHS X ; Save register
LEAX  HEAP, PCR ; Heap start
CWX S ; conparison
BH HPERR ; Input address <e heap start
LEAX HEAPEND, X ; Heap end
WX , S ; conparison
BLO HPERR ; Input address > heap end
ORCC #2 ; Set CC.V
BRA XIT1

HPERR  ANDCC #$FD ; CCV =0

XIT1 PULS X, PC ; Restore and return

Program 6.6 CHKHP - check string address validity
* CPSTR - copy string characters

* Register inputs X - source string address
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Y - destination string address
B - string length

CPSTR PSHS X Y, A B ; Save registers

TSTB ; Check for zero length
CPLOOP BEQ XI T2 ; Check if finished

LDA | X+ ; Get character

STA , Y+ ; and copy it

DECB ; B is counter

BRA CPLOOP
Xl T2 PULS X Y, A B, PC ; Restore and return

Program 6.7 CPSTR - copy characters

* GETSP - get space for string
*
* Register input B - nunber of bytes required
* Register output Y - string address
* CC.V =0 if request fails
* CC.V =1 if request satisfied
* Uses first-fit algorithm ie, returns first area
* large enough to satisfy request. Returns excess
* space as free if space found > space requested
CGETSP PSHS A B, X, U ; Save registers
TFR S U ; Uis pointer to locals
LEAX HEAPEND, PCR ; 1st local = U2
CLRA ; U4 is 16-bit length
PSHS X, A B ; Locals onto stack

FFREE CWPY -2, U

SPFND LDD 1,Y

*

*

LEAY HEAP, PCR Initialise to heap start

At heapend?

BHS NTFND Yes, no space avail able
LDA Y Check if free area
CVPA #255 by conparing with 255

LEAY 1,Y O herwi se increnent Y
BRA FFREE and keep | ooking

BEQ SPFND ; If so, space found
: Pick up free area length

CWPD -4,U Compare with |ength needed
BHS LENCK We have enough

LEAY 3,Y No, look for next free
BRA FFREE area on heap

Now check if too much space. Don't return
an extra 1 or 2 bytes as they are unusabl e

LENOK LDD -4,U ;  Space requested
ADDD #2 ; If D+ 2 >= that available
CwD 1,Y ; don't return space
BHS EXI TOK ; and exit
LDD 1,Y ; get space avail able
SUBD -4, U ; subtract space requested
PSHS A, B ; and save on stack
LDB -3, U ; B =8 bit length
LEAX B, Y ; start of free string

LDA #255 Free indicator
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PULS A B

STD , X

BRA EXI TOK
ANDCC #$FD

BRA XI T3

ORCC #2

LEAS -4,S

PULS A B, X, U, PC

NTFND

EXI TOK
XT3

Program 6.8
* FREESP -

* Register input X -
* Regi ster output CC V
* CC. Vv

FREESP PSHS A B, X, Y
BSR CHKHP
BVC EEXIT
LDB , X

I NCB

LDA #255

STA , X

CLRA

STD 1, X

LDA #255
CWPA B, X

BNE LKLAST
LEAY B, X

BSR JO N

TFR XY

CWPA ,-X
BEQ CHKJN
BSR CHKHP
BVC XI T7

BRA FLOOP
LDD 1, X
STD
TFR X, D
ADDD , S++

PSHS Y

CWPD , S++

BNE XI T7

BSR JAO N

ORCC #2

BRA END7

ANDCC #$FD

PULS A B, X Y, PC

0

LKLAST
FLOOP

CHKIN
,--S

X T7

EEXI T
END7
*

* JON -
* Regi ster
* freed

i nputs XY -

GETSP -

free space on heap
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and mark byte free

get free string length
and store it

and exit

Error indicator

No errors
Di scard |ocal space
Restore and return

get string space

address of space to be freed

1 if space freed
i f

invalid input

Save registers
I's input valid?

No, error return
String length
To get actual no of bytes

Free space indicator
Mark string free

and store 16-bit

free string length

See if followi ng string
is free

No, try preceding string
yes, SO join strings

Find preceding free string
Is byte free

Yes, can it be joined

At heap start?

No preceding free string

Length of free string
Stack it

D = address+l ength

Are strings adjacent
No, return

Yes, join them

Set CC.V

Clear CC.V

join adjacent free segments
addresses of areas to be
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JAON PSHS A B
LDD 1, X ; Length of 1st area
ADDD 1,Y ; Length of 2nd area
STD 1, X : Store total
CR ,VY : CGet rid of free indicators
R 1Y
arR 2,Y
PULS A B, PC
Program 6.9 FREESP - free string space
* OWPSTR - conpare strings for equality
* Register input X - string 1
* Y - stri 2
* Register output CCZ =1 if strings equal
x CCZ=0if not equal
COWPSTR PSHS A B X Y ; Save registers
LDA | X+ ; Length of string 1
OWPA | Y+ ; nust be sane as length 2
BNE CVPXI T ; If not, exit, CC Z=0
TSTA ; Check for O length
CWPLP BEQ OWXI T : A=0, so al done, QC Z=1
LDB |, X+ : Get character
CVPB |, Y+ ; and conpare
BNE CWXI T : Not the sane, CC. Z=0
DECA ; Yes, decrenent length
BRA OWLP ; and continue conparisons
OWXIT PUS XY, A B,PC : Restore and return
Program 6.10 OWSITR - conpare strings
* STRCAT - catenate strings
*
* Register inputs X - string 1
* J P Y - stri n% 2
* Register outputs Y - new string
* QC.V=1- noerrors
: aC.VvV=0- error
STRCAT PSHS X, A B
BSR CHKHP ; Check 1st string
BVC XI T8 : lnvalid, abort
BEXG X Y
BSR CHKHP ; Check 2nd string
BVC XI T8 : Invalid, abort
LDB ,Y ; work out length
ADDB | X ; of new string
BVS EEXI T ; Too | ong(overfl ow), abort
COWPB #255 ; 255 also too |ong
BEQ EEXI T
STX ,--S ; Stack string addresses
STY ,--S
| NCB ; Total space needed incl.
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BSR GETSP ; length byte. Get space
BVC XI T8 ; No space, abort
DECB ; New string length
STB , Y+ ; stored as 1st byte
LDX , St+ ; Cet source address
LDB , X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1, X ; Then free space
BSR FREESP
LEAY B, Y ; Update destination
LDX , S++ ; Get source address
LDB , X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1, X ; Then free space
BSR FREESP
ORCC #2 ; Set CCV
BRA XI T8
EEXIT ANDCC #$FD ; Error indicator
X1 T8 PULS A B, X, PC
Program 6. 11 STRCAT - catenate strings
* SUBSTR - select substring
*
* Register inputs X - source string address
* A - substring length
* B - offset from string start
* Register outputs Y - new address or error nunber
* CC.V=1- noerrors
: CC.V =20 - error
SUBSTR PSHS X, A, B ; Save registers
BSR CHKHP ; Is string valid?
BVS STRXX ; yes, next check
LDY #0 ; error type indicator
BRA EEXIT1 ; error exit
STROK I NCB ; To get offset from 1st char.
LEAY B, X ; Substring address
PSHS Y ; Stack it
LDB , X ; Total string length
I NCB ; To account for length byte
LEAY B, X ; End of string address
CWY ,S ; Wth substring address
BLS | NDXCK ; If invalid index
LDY #1 ; Index error =1
BRA EEXIT1
| NDXOK LDU , S ;  Substring address
LEAU A U ; Add length
PSHS U ; and stack it
CWPY | St+ ; Conpare with end of string
BLS LENOK ; Is index + length valid?
LDY #2 ; No, length too |ong
BRA EEXI T1
LENCK | NCA ; To get nunber of bytes for
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TFR A B ; getspace paraneter
BSR CGETSP ; Get the space
BVS GSPCK
LDY #3 ; No space available error
BRA EEXI T1

GSPCK  PULS X ; Source address
DECB ; For string length
STB , Y+ ; New string length
BSR CPSTR ; Now copy characters
CRCC #2 : No errors
BRA XI T5

EEXI T1 ANDCC #$FD : Indicate error

Xl T5 PULS X A B, PC : Restore and return

Program 6. 12 SUBSTR - select substring
6.4  PCSI TI ON | NDEPENDENT CCDE

One of the problens which can arise when you tr% to use
machi ne code routines which have been witten by other
people is that these routines make assunptions about
the contents of particular nmenory |ocations which you
have used for other things. Wat has happened is that
the operation of the routines depends on particular
instructions and/or data residing at fixed addresses
and, if these instructions/data are not at these
addresses, the routines will not work.

Routines like this are called 'position dependent'
and often cause many problens for the assenbly |anguage
programer. However, it is possible to wite 'position
I ndependent’ code whi ch executes correctly irrespective
of where it is loaded into the machine menory. If you
are building a library of subroutines or witing a
program which nay run on other machines, you should
always wite position-independent code.

Posi ti on-i ndependent code (PIQ is code that
executes in the sane way regardl ess of where it resides
in nmenory. In other words, if it is located at a
different address from that which it was originally
assenbled, it will still execute correctly. To produce
position-i ndependent code for the Dragon, you nust
adhere to a single fundanental rule:

Al addresses which you use in your program shoul d
be relative rather than absol ute addresses.

In general, it is best to wite your routines so that
addresses are all relative to PC but it is also
possible to use the direct addressing node of the M809
in the production of PIC For the neantine, however,
we shall concentrate on how to produce PIC by using
PG rel ative addressing.

VW have already seen exanples of PGrelative
addresses as all the MB809 branch instructions refer to



143

the destination address as an offset from the current
value of the program counter. Therefore, even if the
code is noved (relocated) to some other address, the
relative distance between the branch instruction and
its destination remains the same. However, you cannot
cheat by adding or renoving machine code instructions
W thout re-assenbly. If you do so, the programw || not
work as the relative distance specified in the branch
instruction will be incorrect.

In early mcroprocessors, the production of PIC was
often difficult because relative branch instructions
only allowed an 8-bit offset thus restricting the
relative branch to the range -128 -> 127. However, no
such problem exists in the M8C as Iong branch
instructions allow ng offsets from 32767 to -32768 may
be used. In fact, if you wish to use sonme of the
exanpl es discussed in earlier chapters in conbination
with the exanples in this chapter, you may have to
change sone  of the BSR instructions to LBSR
instructions as the subroutine code may be |ocated nore
than 127 bytes away from the subroutine call.

As well as addressing instructions in a position-
i ndependent way, it is also essential that data are
al so addressed using the PGrelative addressing node.
A though we introduced this addressing node in Chapter
2, our exanples so far have nostly wused direct,
extended or indexed addressing. The reason for this is
that we felt that the introduction of PGCrelative
addressing was peripheral to the concepts illustrated
in the exanpl es.

Recall that the Ms809's PG relative addressing node
uses the program counter as an index register and adds
either an 8-bit or a 16-bit offset to 1t. The table
bel ow shows exanples of how data can be addressed in a
position-independent way using PG relative addressing.
Assune that TABLE, WORD, and \TA are storage | ocations
set up using an FCB or RVB assenbl er directive.

Non-PI C PIC
LDX STABLE LEAX TABLE, PCR
LDX WRD LDX WRD, PCR

STA DATA STA DATA PCR
Notice how easy it is to wite code in a position-
i ndependent way. Instead of referring to the absol ute

synbolic address, all you have to do is to tell the
assenbler that PGrelative addressing is to be used.
The assenbler works out the correct displacenent from
the instruction position and generates the appropriate
postbyte and of f set.

The only instructions which cause any real
difficulty are those which wuse 16-bit immediate
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addressing where the 16-bit wvalue in the instruction
refers to an absolute address. To |oad such addresses
in a position-independent way, the LEA instruction
rather than the LD instruction is used. Ther ef or e,
rather than saying LDX STABLE to load the address of
TABLE into register X this should be witten LEAX
TABLE, PCR

However, other instructions such as OW which nmght
also use immediate values which are addresses do not
have position-independent forns. This neans that when
a 16-bit register is to be conpared with an imediate
val ue representing an address, we have to make use of a
tenporary location on the stack.

For exanple, consider the following fragnment of
non-PIC code which is often found in prograns which
| ook up tabl es of val ues.

LDX #TABLE ; Set up base address of table
LoCP e

Code to | ook

up table

X #TABEND ; is table conpletely scanned

BNE LOCP
TABLE FCB <<table data val ues)
TABEND EQJ * : table end
In this exanple, TABLE and TABEND represent absolute
addresses and, if relocated wthout reassenbly, this
code woul d not execute properly. In order to nake this

code position independent, we nust ensure that all
absol ute addresses are elimnated. V¢ do this by using
the LEA instruction to conpute an address and we then
store this address where it nmay be accessed and
compar ed. V¢ need a tenporary location for the
absolute address and, as always, the best place to
allocate tenporary store is on the stack.

W mght, therefore, wite the above exanple in a
posi tion independent way as foll ows.

LEAX TABEND, PCR
PSHS X ;. Stacks address of TABEND
LEAX TABLE, PCR

LooP
awx | S ; Conpare X with top stack
BNE LOCP
LEAS 2,S ; Discard top stack el ement

In general, when you are witing your own routines you
should always try and use PGrelative addressing so
that PIC is generated by the assenbler. However, if
you are making use of routines built into the BASC
system such as the input and output routines INH and
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QUTCH described in Chapter 5, PGrelative addressing
shoul d not be used.

The reason for this is that these routines always
reside at fixed locations and if you relocate your own
program the system routines do not nove wth your
program Therefore, you should always use junp rather
than branch instructions to reference these system
routines.

For exanple, to reference the input routine at
address 8006, you mght wite the followi ng code:

INPUT  EQU $8006

JSR INPUT

It would be quite incorrect to say LBSR INPUT as
rel ocating your code woul d cause the displacenment built
into the branch instruction to e incorrect.
Naturally, the same applies to nmenory areas which have
a dedicated function, such as the BASI C screen area.
This starts at absolute address 400, so LD rather than
LEA instructions are used to pick up that address.

6.4.1 Junp tables

The only real problem associated with PIC arises when
sonme other program is assenbled and uses PIC routines.
Natural ly, the addresses of these routines are
assenbled into the program and, if the routines are
r el ocat ed, these addresses will be w ong. After
relocation, it is necessary to nodify the program to
reflect the new, relocated addresses and this seens to
negate sone of the advantages of producing PIC.

In order to avoid a great deal of tedious address
nodi fi cation, an addressing technique can be used which
isolates the necessary changes so that only a single
table need be changed. This technique is based around
the idea of so-called 'junp tables' or ‘'vector
| ocations' .

Ajunp table contains, at known positions, a link to
the actual addresses of routines and data used by a
program If these addresses change, only the junp
table need be nodified to reflect the new addresses.
There is no need to change the program which refers to
these addresses through the junp table.

Where routines are addressed, the junp table is
usually made up of ju or branch instructions (hence
the nane) which inmmediately junp to the addressed
routines. W shall see shortly how such a table, which
is called a direct junp table, nay be set up.

Wien data are referenced via a junp table, the table
locations do not contain instructions but merely hold
the address of the referenced data. The data item can
be accessed usi n? i ndirect addressing. Hence, this
type of junp table is often terned an indirect junp
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table. O course, there is no reason why the data in
such a table should not be subroutine addresses. The
actual routines would then be called using a JSR
instruction with the indirect addressing node.

Junp tables are the nechani sm which provi des access
to the BASIC I/Oroutines. 1In fact, there are two junp
tables referencing these routines - a direct junp table
starting at address 8000 and an indirect junp table
starting at address A00O.

As an exanple of how these tables can be used,
consider the character input routine discussed in
Chapter 5. In the direct junp table, address 8006
holds a junp to this routine whereas the first |ocation
in the indirect junp table (A000) is set up with the
address of the input routine.

If we wish to use the direct ju table, the
followng instruction is wused to cal this input
routine:

JSR $8006

O the other hand, if the indirect junp table is used,
i ndirect addressing nust be used to reference the input
routine:

JSR ($A000)

The junp tables for these BASIC I/O routines are set up
at nown |ocations but if you envisage that other
programs  will use  your routines, it is a
straightforward matter to set up your own junp tables.

The skeleton exanple below shown how direct and
indirect junp tables may be defined by the assenbly
code progranmmer.

SUB1

<code for subroutine 1>
SuB2

<code for subroutine 2>
SUB3

<code for subroutine 3>

Now set up an origin for the junp table

CRG $1000
SUB1V JMP SUB1

SuB2vV JMP SUB2
SUB3V JMP SUB3

* |f an indirect junp table is required it
¥ mght be set up as follows:

SUBL1V FDB SUB1
SuB2v FDB SuB2
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SUB3V FDB SUB3
This is a si V\ﬁ._y to set up junp tables but the
t hi

le
di sadvantage wth s technique is that the addresses
filled in the ju table are those known when the

program is assenbl ed. They are called ‘'static
addresses’' . If the program is relocated, t hese
addresses remain as they were and are therefore
i ncorrect. Wat is needed is a technique which

allocates addresses to a junp table immediately before
the programruns. That is, the junp table must be set
up dynamcally each time the programis executed.

To calculate the addresses at run-time requires the
use of initialisation code which fills in the junp
table addresses. The following initialisation code
shows how this can be achieved.

INT LEAX SUB1, PCR

STX SUB1V+1 ;. SUB1V+1 because the
* JMP opcode is at SUBLV

LEAX SUB2, PCR

STX SUB2V+1

LEAX SUB3, PCR

STX SUB3V+1

CRG $1000 ; Junp table address

SUBLV  JMP $0000
SuB2vV - JMP $0000
SUB3V  JMP $0000

W leave it as an exercise for the reader to work out
how to initialise an indirect junp table dynamcally.

Normal ly, the INT routine is the very first routine
in a program as it is essential that its address is
known 1n order that it may be called to set up the junp
table. Placing INT at this position also neans that
the program can be initiated Trom BASIC once C.QADWed
by using the EXEC command. There is no need to specify
an address for EXEC.

The use of an initialisation routine opens up the
possibility of using an alternative technique of
produci ng position-independent code. This technique
relies on all addresses bei ng direct addresses with the
actual address conputed by adding the contents of DP to
the address specified in the instruction. In other
words, the instruction address is actually a DP-
rel ative address.

In order to produce PIC code wusing direct
addressing, DP must be set L'J\E) dynamcally at the start
of program execution. The INT routine nust search for
an available page in menory and assign its address to
the direct page register. You mght wish to explore
the possibilities of this technique but be warned that
t he | C system keeps many pages for its own use and
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assumes that they will not be used by the programrer.
You have to be very careful about saving and restoring
the value of the DP register and it is our opinion that
the use of PC-relative addressing is a better way of
produci ng position-independent code.

6.5 COMBI NI NG ASSEMBLY LANGUAGE W TH BASIC

A di sadvant age of assenbly |anguage progranming is that

it is difficult to wite and test |owlevel |anguage
prograns even when strict rules of programmng are
adhered to. This is in contrast to BASIC prograns
whi ch, because of the way in which BASIC s
i npl emented, are easy to test. It is sinmple to print

out the values of variables as the program executes or
to break in and inspect variable values that you think

m ght be wong. Ideally, we would like this flexibility
but with the speed and power of assenbly | anguage.
There is no such ideal systembut, in many cases, it
is possible to call assenmbly code routines from BASIC
programs thus using high and low level programming in
the nost productive way. It is a fact that nost

progr ams spend nost of their tinme executing a
relatively small proportion of the total program code.
The speed of BASIC programs can be significantly
increased by identifying execution-intensive sections
and replacing these by nachine code equivalents. In
this way, the mpjority of the program made up of user
pronpts, print statenents, etc. can remain in BASIC
with only tine critical sections progranmed in assenbly
| anguage.

The easiest way to incorporate nachine code routines
in a BASIC program is to use BASIC S EXEC statement.
The EXEC statenment takes an address as a paraneter and
transfers control to the code residing at that address.
It is used as foll ows:

EXEC <addr ess>

In actual fact, the address operand, which nust lie in
the range 0000 to FFFF, in the EXEC statement is
optional. If it is present, the machine code routine at
that address is executed with control returned to BASIC
after a RTS or PULS PC instruction is executed. If the
address is omtted, EXEC consults a junp table (the
EXEC vector) to find the address of the code to be
execut ed.

The EXEC vector is located at address 9D and is mnade

up of a single word only. Therefore, the nenory
locations 9D and 9E should contain the address of the
code to be EXECed. Initially, the EXEC vector is set

up to contain the address of an error routine which
expl ai ns why the message '?FC ERROR is output when an
EXEC wi thout a parameter is used as the first EXEC in a
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program If an address is specified in an EXEC cal |,
that address is filled into the EXEC vector with the
result that subsequent EXECs without an address
paraneter call the machine code at that address.

An alternative way to set up the EXEC vector is via
the CLOADM comrand.

EXEC

This instruction sequence sets up the EXEC vector to

refer to the execution address of the machine code

%(E ramcall ed "Nane" which has just been |oaded. The
instruction then transfers control to this code.

The main advantage of EXEC is its sinplicity and the
fact that it can be used to invoke any nunber of
machi ne code routines. The main disadvantage with EXEC
is that any routine parameters nust be passed in nenory
| ocati ons and the programmer nust PCKE these paraneters
into known locations before the EXEC call. Simlarly,
the results of executing the machine code routine nust
be in known |ocations and can only be retrieved using
PEEK.

An alternative way to invoke nachine code routines,
whi ch permts paraneter Passi ng, is to nmake use of the
USR call. The nunber of USR calls available to the
BASI I nachi ne code programmer is restricted to ten and
these are naned USRO to USR9. USR calls do not take an
explicit address but transfer control to the address
which the programrer has previously associated wth
that USR call.

The addresses to which particular USR calls shoul d
transfer control are set up using a DEF USR statenent.
This has the general form

DEF USRh = address

The nunber n nust be a single digit in the range 0 to 9
and the address nust lie in the range 0 to FFFF. The
general formof the USR call itself is:

USRn( <ar gunent >)

Executing a <call of USRh causes control to be
transferred to the address speci fi ed in the
corresponding DEF USRn statenent. Al though the
definition of the USR call function states that the
nane USR should be followed by a single digit fromO to
9, readers who try to call USR in this way wll find
that all USR calls actually result in a call to USRO
This is due to an error in the BASIC system which,
fortunately, can be circunvented very easily.

The bu% in the BASIC system causes the interpreter
to skip the digit so that USRO is taken to be the sane
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as USR1, USR2, etc. As BASIC takes a USR call without
a parameter to be equivalent to USRO, the effect of the
bug is to make all USR calls default to USRO

Rather than call a USR call as USR1, USR6, USR9,
etc., the digit indicating which USR call is to be used
should be padded with an extra zero. Therefore, to
call USR1l, you nmust actually wite USRO1, to call USRS,
you nust wite USRO6, etc. Qoviously, this is not
necessary for USRO but for reasons of consistency it is
probably better to call this as USROO.

A USR call from BASIC is treated like a BASIC
function so that it is used as part of an expression
and should return a value to the BASIC program
Exanpl es of USR calls are:

10 DEF USRO = &H1000 : DEF USRL = &H2000

20 A = USROO(A) : ' Transfers control to &H1000
30 IF USRO1(0) =0 THENB=B + 1
If a USR call is wused without first defining the

address it refer to, the USR call wll cause a nessage
'"?FC ERRCR  to be printed. Li ke the EXEC statenent,
each USR call has an associated vector which contains
the address of the entry point of the mnachine code
routine to be executed. The USR vector is initially set
up to refer to the error routine which prints the '?FC
ERRCR mnmessage. Wen a DEF USR statenent is used, this
fills in the address in the appropriate vector.

The table below lists the vector addr esses
associated with each USR call.

USR Cal | USR Vect or
USRO 134: 135
USR1 136: 137
USR2 138: 139
USR3 13A: 13B
USR4 13C:. 13D
USR5 13E: 13F
USR6 140: 141
USR7 142: 143
USR8 144: 145
USR9 146: 147

If you are trying to link nmachine code and BASIC for
the first tine, we recomrend that you experinent wth
the technique by using EXEC rather than USR calls.
Unfortunately, to set up USR call paranmeters requires
know edge of how BASIC represents nunbers and strings.
W therefore return to the use of USR calls in Chapter
9 after BASIC S data representation has been descri bed.



Chapter 7
Graphics programming

e of the greatest advantages of assenbly code
programming, its total flexibility, is also one of its
nost serious drawbacks as the programmer has to concern
hinself with every detail of the problem e area in
particular where this lack of support is very evident
Is in graphics and aninmation.

The problem becomes very obvious if the would-be
animator has relied on the graphics facilities provided
in Extended Color BASIC and has conme to expect such
facilities when designing and witing ?ra hi cs
prograns. However, the nmajor disadvantage o | C
programming is its inherent slowness and it is in
graphics applications that this is nost evident. Onl
the sinplest of games, for exanple, wth mnim
novenent can be programmed in BASIC if they are to
present a challenge to the player.

A very large part of the Dragon's BASIC system is
dedicated to providing graphics facilities and it 1is
not an easy task to duplicate those features as
assenbly code routines. Neverthel ess, if speed is
required, some graphics programmng must be carried out
in assenbly code but the programmer should, as far as
possible, nake use of BASIC for those parts of his
program which are not tine critical.

In general, a good graphics programmng strategy is

to develop the —conplete program using. ICS
facilities and to iron out program bugs at this stage.
This will probably result in a systemwhich is far too

slow but you nay then replace BASIC routines . with
assenbly code routines to speed up your system

It is seldom necessary to duplicate the BASIC
routines exactly unless they are conponents of other
routines. Rather, it is usually possible to nake all
sorts of sinplifications and later in the chapter we
look at how to design, code and animate screen
patterns. The chapter also discusses, in some detail,
the Dragon's graphics hardware and describes the
di fferent graphics nodes available to the programrer.

Firstly however, we describe in general terns, how
the Dragon's display system is organised. As in nost
ersonal conputer systens, the display system on the

agon is menory-mapped. This nmeans that an area of
menory is scanned 50 or 60 times per second, depending

151
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on the local nains frequency, and the contents of that
area are translated by special hardware to a standard
TV signal which may be displayed on a donestic
tel evision set.

The nachine allocates a 512 byte area of nenory for
an al phanuneric display and it is this area which is
used to display BASIC program text as it is input, and
program results as they are output. The Dragon's
al phanuneric display is organised as 16 lines with 32
characters per line. W show later that this di Sﬂl ay
area can also be used as a lowresolution graphics
area. This text segnent is always allocated at address
400 in menory so locations 400-5FF are dedicated to the
al phanurreri c di spl ay.

The nmenory dedicated to graphics, that is, the
display of pictures rather than text, is organised into
graphi cs segnents of 512 bytes each. In full graphics
node, a mninum of 2 segnments nust be allocated but
there is no inherent rmaximum nunber of graphics
segnent s. Qovi ously, however, the maxi num nunber of
such segnents is limted by the anount of free nenory
available to the graphics programrer. These graphics
segments are usually allocated from address 600
onwards, that is, imediately after the BASIC text
segnent. The BASIC system organises these graphics
segrments into 'pages’ of 1536 bytes and a nmaxi numof 8
pages is available to the BASIC progranmer.

In order to display characters, the display screen
is considered as a two-dinensional array of 'picture
el ements' or pixels. The nmore pixels on the screen, the
finer detail which can be resolved and the Dragon
conpares favourably with other personal conputers in
this respect. The Dragon's display is nade up of 256
hori zontal pixels by 192 vertical pixels. The Dragon's
graphi cs hardware provides various graphics nodes where
the screen is considered as a matrix of elenments. Each
elenrent is made up of a single pixel at the highest
resolution or consists of an array of pixels.
Depending on the resolution chosen, this array can vary
from2 by 1 pixels to 12 by 8 pi xel s.

In a menory-mapped graphics system all infornmation
about a particular screen elenent nust be encoded in
nmenory. is means that the pixel settings and col ours

must be held in menmory locations so there is a trade-
off between display resolution and the nunber of
colours available to the programmer. H gh-resolution,
mul ti-colour displays require a great deal of nenory to
encode the screen information so the Dragon's (r;rap ics
system limts the nunber of colours available when
resol uti on graphics are used.

7.1 GRAPH CS DI SPLAY HARDWARE

The Dragon's graphics display hardware is made up of 3
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m crochi ps. Wrking in conbination, these chips extract
information from the systemis menmory and display that
information on a standard television screen. The so-
called "Video RAM is the menory area which is devoted
to the display and the contents of this menory area
determne what is actually displayed on the user's
screen.

The chips making up the graghi csS system are the
Vi deo D splay ?eneratoer\ﬁVIIB - 6847), the nchr onous
Address Ml tiplexor ( - 6883), and a ri pheral
Interface Adapter(PIA - 6821). The interconnections of
these chips is shown in the system block diagram in
Figure 1.2. In spite of the fact that the nanes of
these chips sounds daunting, it is fairly easy for the
assenbly |anguage programmer to control these devices.
Each of them and the Video RAM is described bel ow.

7.1.1 The VDG chip

The video display generator (VDG chip is the nain
conponent of the Dragon's graphics system As the name
suggests, it generates the video signals that are input
to the user's television set to provide the screen
di spl ay. For those readers wth experience in
electronics, a conplete description of this chip is
provided in Appendi x 3.

However, you do not need experience in electronics
to understand how to control this chip. Al you nust
understand is that the chip has a set of control |ines
which nmay be in one of two states representing the
binary values 1 and 0. Wen a line represents a 1, we
say that it is H, when it represents a binary zero, we
say that the line is LO Control signals can be
generated by witing information to specific nenory
addr esses.

The VDG chip determnes the graphics capabilities of
the Dragon and it does so by providing a selection of
nodes of operation. These nodes dictate the resol ution
of the display, the nunber of display colours, the
actual colours displayed, etc. In all, there are a
total of 14 different display nodes:

(D Four al phanumeri c nodes

(2) Two Sem graphi cs nodes

(3) Four col our graphi cs nodes

(4) Four resolution graphics nodes

The PMCDE statenment in BASIC all ows some of these nodes
to be provided but not all of themare available to the
BASIC programrer. However, the assenbly |anguage

programrer nmay use all of the display nodes by directly
configuring the VDG chip. Each of these nodes is
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described in a separate section later in this chapter.

The VDG chip has eight control lines which are used
to select the node of the display. The table bel ow
shows the function and the names of each of these
control |ines.

Control |ine ~ Function _

AG Set LO to indicate A phanureric
H to indicate G aphic node

A'S LO to indicate A phanureric

| NT/ EXT by 88 & "ELERESH SEM 9 AR ¢ e

and external (H) character
generator ROM
GV, GvL, G Sel ects the graphi cs node

CSS Sel ects between the two col our sets
I NV S_e{jects bet ween i nverse and nornal
vi deo

The nmode control lines, AG |NI/EXT, GW, GV, GwW,
and CSS, are connected to the PIA chip as described in
the followi ng section. The desired node may be set up
by setting the aflo_ﬁropriate bit pattern in the PIA s
data register. is causes the appropriate control
signals for the VDG chip to be generat ed.

Al though six of the VDG control lines are set up via
the PIA, there are only five output lines fromthe PIA
to the VDG chip. There is no need for six lines as the
INT/EXT and GWO input |ines share a single PIA output
line. Wwen GW is needed in graphics node, the value
of INT/EXT is irrelevant and when the value of |NI/EXT
is actually needed in al phanuneric/Sem graphics node,
the value of GW is not used.

The remaining VDG control lines AS and IN are
connected to two of the RAM data lines, D6 and D7.
These lines can therefore be set on a character by
character basis in the al phanureric/sem graphi c nodes.

The VDG chip has the capability of generating eight
colours but, when colour graphics nodes are used,
manor% restrictions limt the nunber of colours which
my be displayed to four. The weight colours are
therefore separated into two colour sets and the CSS
control line on the VDG indicates which colour set is
in use.

The colours in each colour set are:

Col our set 1 Col our set 2

G een Buf f

Yel | ow Cyan
Bl ue Magent a
Red QO ange

Wien the nenory bits defining an elenent are set, this
nmeans that the element is 'on' and it is displayed in
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col our. Wien the associated bits are unset, the
elenent is off and is displayed as bl ack.

7.1.2 The peripheral interface adaptor

The PIA is an exanple of a general -purpose programabl e
interface device which is used to interface the M809
processor to other devices. W describe the operation
of the PIA in Chapter 8 as it plays a very inportant
role in input/output programmi ng.

The bl ock diagramof the Dragon in Figure 1.2 shows
that the systemcontains two Pl A chidps. The PIA used to
control the VDG chip is PIAL and, by setting the
appropriate bits in the PIA's Bside peripheral data
register, control signals for the VDG chip can be
gener at ed.

As the M809 uses nenory-mapped addressing, this
data register is set by witing bit patterns to the
appropriate nenory address. PIAL is addressed via
manor% locations FF20 through to FF23 with the B-side
peripheral data register located at |ocation FF22. W
mght therefore set up the VDG inputs as foll ows:

LDA <VDG input state>
STA $FF22

In fact, only bits 3 to 7 of this register are used to
set the VDG control lines with bits O to 2 used for
ot her purposes by the Dragon. The values of these bits
are irrelevant for graphics programing. The table
bel ow shows the association of bits in the PIA register
and VDG control |ines.

Bt 3 CSS
Bt 4 GW
Bt 5 GW
Bt 6 QW
Bt 7 AG

7.1.3 The video RAM

Wiilst it is the VDG chip which determnes how data is
di spl ayed on the user's screen, it is the contents of
the video RAM which specifies what is displayed.
Remenber that the display is nade up of 256 by 192
pixels and the contents of the video RAM determ ne
which pixels should be displayed and the colour of
di spl ayed pi xel s.

The VDG continually scans the video RAM and uses the
data there to build up an inage on the screen.
Therefore, by changing a data byte in the video RAM
the  programrer can change the pixels in the
corresponding screen position. The resolution of the
display is deternmined by the nunber of pixels affected
when a single data byte of video RAM is nodifi ed.
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7.1.4 The synchronous address nultipl exor - SAM
The SAM chip has been specifically designed to provide
the necessary control and timng signals for the Ms809,
the VDG chip, and the video RAM Mich of this
information is of no relevance to the programrer but
sone aspects of the operation of the SAM chip are
i mportant. V¢ concentrate on these aspects in this
section rather than describe the SAMchip in detail .
Three bits in the SAM control register are used to
set the appropriate display node. These bits should be
set to the same value as bits 3-5 in the VDG control
regi ster. The SAM control register is nenory n'aggc%d at
address FFQ and occupies the address range to
FFDF. As the control register is 16 bits wide, why are
32 bytes allocated in nenory to that register?

The 16-bit control register maps onto the 32-bit
range FFA to FFDF so that each register bit is
represented by two nenory bytes which have adjacent
even and odd values. Therefore bit O in the control
register is represented by FFQ0/ 1, bit 1 by FFC2/3, bit
2 by FFCG4/5 etc. In order to clear a particular bit, a
wite operation to the even address is carried out, and
to set a SAMcontrol register bit you must wite to the
associ ated odd address. This technique of setting and
unsetting the control register bits is the reason why
32 bytes are allocated to a 16-bit register.

The SAM control register bits which indicate the
current graphics node are the bottom three register
bits terned VO, V1, and V2. These have associ at ed
addresses FFCO 1, FFC2/3 and FFC4/5. To set up the
graphics node required, you nust carry out the
requisite wite operations to these addresses.

As well as these node control bits, there are seven
other SAM control register bits (bits FO-F6) which are
used to indicate the base address in mam)r)ll_ of the
graphics segnments used for the video RAM he table
bel ow shows the association between these SAM control
register bits and nmenory bytes:

FO  FFOB/ 7
F1  FFC8/9
F2 FFCA/B
F3 FFOOD
F4 FFCE/F
F5  FFDO/ 1
F6  FFD2/ 3

The 7-bit wvalue in the SAM control register is
miltiplied by 512 to conpute the base address of the
graphics segnments used. This is the reason why
graphi cs segnents always have a base address which is a
mul tiple of 512 and why thegw\;alre al ways 512 bytes | ong.

Because the VDG and chips nmust operate 1In
tandem they are normally set up in the sane node so



that signal timngs, etc. are conpatible. If set up in
different nodes, the systemw || produce garbage except
when the VDG chip is in alphanuneric node and the SAM
chip is in one of the colour graphics nodes. 1In this
case, extra Semgraphics nodes are available and these
are described in section 7.6.

7.2 | NTEGRATI NG BASI C AND ASSEMBLY GCDE GRAPH CS

One of the strengths of the BASIC system on the Dragon
is the graphics facilities Provi ded by Mcrosoft's
Extended Color BASIC. These ftacilities allow conplex
graphics prograns to be witten with relative ease but,
as with all BASICJ)rograrrs, they are relatively slow
Using assenbly code speeds up the systems (draphics
very considerably but is much less convenient for the
pr ogr anmer . The ideal solution is to wuse the
convenience of the BASIC facilities when execution
speed is not inportant and to program time-critical
sections of the programin assenbly | anguage.

Typically, those parts of a graphics program which
are not time critical are the parts involved wth

initialisation and hardware setup. In this section we
look at some wuseful BASIC graphics comands and
describe a BASIC subroutine which wll set up the

graphics system then call an assenbly |anguage program
which actually creates the display.

G the many BASIC commrands used for high resol ution
graphics, three are of particular inportance to the
assenbl y | anguage programer.

(L) SCREEN t ype, col our set

This command is wused to specify whether full
graphi cs or al phanuneric/ Sem graphics node is to
be used. For a full graphics node, type is 1

or 0 and selects the colour set as defined i
section 7.1.1.

otherwise 0. The colourset parameter is either 1
n

(2) PMDE node, st art page
This statenment selects one of the five graphics
nodes available with Extended Color BASIC and is
only meaningful if a SCREEN 1, colourset conmand
has been issued. The nmodes avail able are summar-

i sed bel ow
Mode Resol uti on RAM Dbyt es Graphics type
0 128 by 96 1536 Resol uti on
1 128 by 96 3072 Col our
2 128 by 192 3072 Resol uti on
3 128 by 192 6144 Col our
4 256 by 192 6144 Resol uti on

The startpage value is used to select the base



158

address of the graphics display. In Extended
Color BASIC, the display area is nmade up of one
to four pages of 1536 bytes each with up to eight
pages used for the display. Therefore, the start-
Ing page value nust lie in the range 1 to 8 wth
page 1 starting at address 600, immediately after
the text page. The table below shows the rela-
tionship of pages to RAM addresses.

Page RAM addr ess range
600- BFF
C00- 11FF
1200- 17FF
1800- 1DFF
1E00- 23FF
2400- 29FF
2A00- 2FFF
3000- 35FF

coO~NO TR~ WN

(3) PCLS c

This command is used to clear the high-resol ution
di splay screen to the background colour c, pro-
vided that ¢ is in the available colour set for
the current node. |If this is not the case, or c
is omtted, the default background colour is
used. This is green if colour set 1 is selected
and buff if colour set 2 is used.

SCREEN, PMDE and PCLS are wuseful to the assenbly
| anguage programmer since they can be used to set LrJrB a
?raphi cs display prior to 1ts wuse in an assenply
anguage program In other words, the use of these
commands avoids the need to wite machi ne code routines
to performsimlar functions.

W show how these can be wused in the BASC
subroutine bel ow This routine initialises the
graphi cs system using SCREEN, PMODE, and PCLS cormmands
ZES? calls an assenbly |anguage routine at address

1000 SCREEN 1,0 ' Select graphics screen

1010 PMXDE 0,1 "Sel ect graphi cs node

1020 PCLS "Aear graphics display

1030 EXEC &#E21 'Gll nachine code

1035 " Don't return imediately to BASIC

1036 ' as this nmeans switch to text screen

1040 | F I NKEY$="" THEN 1040 ' and display is |ost

1048 Switch colour sets and watch
1049 'screen col ours change
1050

1060 IF IN<EY$:" " THEN 1060
1070 SCREEN 0,0 'Now revert to text node
1080 RETURN

Program 7.1 BASIC test rig for graphics prograns
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7.3  ALPHANUWMERI C DI SPLAY MCDES

The al phanuneric mode is the node adopted by the Dragon
when it is switched on or reset. n this node, the
display is nade up of a 32 by 16 matrix of display
elements with 512 bytes of video RAM dedicated to this
display. The BASIC system allocates this display area
at address 400 so that the SAM control register bits
FO-F6 are set to 02.

Although the VDG chip supports four different
al phanuneric nodes, the Dragon hardware is only
designed to make use of one of these. The other nodes
require special read-only menories to be installed and
attenpting to use them wll result in unpredictable
access to RAM Nevertheless, it is possible to use
these nodes if you are prepared to spend sone time in
experinentation to determne where the VDG accesses

The information in the VDG data sheet should be
sufficient to get you started with these experinents.

Each character on the display is represented by 8 by
12 pixels although only 5 by 7 pixels are used to form
the actual character. The remaini n% pi xel s define the
space between the characters. he shape of the
characters in alphanuneric node is deternmined by a
read-only nmenmory (ROM) which is build into the VDG
chip. Unfortunately, this ROM has space for only 64
characters so this neans that the full ASO I character
set is not avail able. In articul ar, | ower case
characters have been excluded and this limts the
di splay capabilities of the Dragon.

As the naxi num nunber of characters which nay be
held in the VDGs ROMis 64, this neans that 6 bits of
an 8-bit byte are required to represent the character
value. The renmaining 2 bits represent the INV and AS
control inputs to the VDG chip. One bit specifies
whet her the display node is al phanurmeric or Sem graphic
and the other specifies whether the character is to be
displayed in reverse or nornmal video. The table bel ow
shows the usage of the bits in an 8-bit data byte:

Bits 0-5 Character code
Bit 6 IN/ control bit
Bit 7 AScontrol bit

e of the problens which arises with this display node
is that there is not a one-to-one correspondence
between the character code in the video RAM byte (which
is an ASOIl character) and the character which is
actually displayed. To illustrate this, you mght Ilike
to run the follow ng BASI C program

5 OS

10 FORK = 0 to 127
20 K$ = CHR$(K)

30 PCKE &H#00 + K K
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40 PRNT @56 + K K$;
50 NEXT K

Program 7.2 Screen character mnappi ng

The statenments at lines 30 and 40 should be equival ent
in that they should both place the ASAIl value of a
character in the video RAM However, sonme characters
will be displayed differently.

To further illustrate this point, type in the
foll owi ng anendnents to the program

10 K$=I NKEY$: |F K$="" THEN 10

20 K =ASC( K$)

50 P1 = PEEK(&H00 +K)

60 P2 = PEEK(&H00 + 256 + K)

70 PRINT @80, HEX$(K) , HEX$( P1) , HEX$( P2) ;
80 @QOTO 10

Wien the programis run, you will see that the actual
ASCI| codes K and P1 remain the sane but that P2, the
result of printing a character, is different. This
nmeans that the BASIC print routine is altering the
character code before placing it in the video RAM

This conversion is carried out by the standard BASI C
character printing routine QUTCH. W have already
nmentioned this routine in Chapter 5 and, because it
takes care of the necessary character conversions for
the VDG chip, we recoomend that it always be used for
character output.

QUTCH places the character to be output at the
current cursor position on the screen. The cursor
position is held in a systemvariable called CURADR and
the contents of that variable determ nes where, on' the
screen, the cursor is displayed. Qursor blinking is
under the control of a systemroutine called CBLINK and
the bli nki n% effect is the result of inverting and re-
inverting the cursor position character.

As well as performng code conversions, the routine
QUTCH also carries out other screen 'housekeeping'
duties. It handles screen scrolling when the end of a
line is reached, deletes characters from the screen
when the delete key is pressed, and updates the cursor
position so that the next character input is at that
posi tion.

Normally, the Dragon display consists of dark
characters on a |light background. In fact, the
‘nornal' character set of the VDG chip consists of
light characters on a dark background so the Dragon's
display is actually the inverse character set. This
means that the IN/ control bit (bit 6) of each data
b?/te nust be set to indicate dark-on-light display. To
illustrate this, the follow ng program mani pul ates the
INV bit of every character in the display:
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LDX #$400 ; Display start address
NEXTCH LDA |, X ; Character into A
* INV bit manipulation here - see bel ow
STA | X+ ; Put character back
CWPX #$5FF ; Reached end of screen?
BLS NEXTCH ; No, repeat
RTS
Program 7.3 INV bit manipul ation

The INV bit can be manipulated in the foll owi ng ways:

I nstruction Ef f ect
ORA #$40 Sets INV to 1 so 'nornalising’ the
di spl ay
ANDA #$BF Clears INV so inverting the display
ECRA #%40 If INV is set, it is unset and vice
ver sa. The effect of this is to
reverse the display

7.4 COLOUR GRAPHI CS DI SPLAY MODES

The VDG provides eight full graphics nodes although
only five of these are directly supported by Extended
Color BASIC. The npdes range from a four-col our 64 by
64 el enent display requiring 1024 bytes of video RAM to
a two-colour 256 by 192 display requiring 6144 bytes of
video RAM Four of these npdes are terned colour
graphi cs nodes and these are described in this section.
Each of these npdes is nunbered 1, 2, 3 or 6 depending
on the nunber of graphics pages required and col our
graphics nodes are indicated by using this nunber and
suffixing it with C

In any colour graphics node, the setting of each
element in the display is controlled by two bits in the
video RAM byte so that the element may be one of four
col ours. The general format of a video RAM byte for
colour graphics is shown in Figure 7.1.

C1Co GG GG GG

E3 E2 El EO

Fig. 7.1 Colour graphics byte format

Because the VDG is capable of generating eight colours,
two colour sets each of four colours are available.
VWich colour set is in use is determned by the CSS
input line to the VDG The table below shows the
avail able colours and their associated coding in the
vi deo RAM byte.
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CSsS Col our C1C0

0 G een 00

0 Yel | ow 01

0 Bl ue 10

0 Red 11

1 Buf f 00

1 Cyan 01

1 Magent a 10

1 Or ange 11
To illustrate each of the graphics nodes avail able, the
assenbl y | anguage routine shown as Program 7.4
generates a checkerboard pattern on the screen. As

each graphics nmode has different requirenments, the
appropriate constants have been defined using an EQU
directive so that they nmay be weasily altered for
anot her node. The appropriate equates are defined al ong
with the description of each of the graphics nodes and
are initially set up for the colour graphics 1 node.

The nmethod used to generate the checkerboard pattern
is to set up alternating on-off patterns in the video
RAM byte and then wite a conplete row of such bytes to
the screen. After a row has been written, the on-off
patterns are reversed and another row witten. This
means that an on-pattern falls immediately below an
of f-pattern whi ch is bl ack t hus creating t he
checker board.

VWhen in colour graphics node, two bits are used to
define each screen location so the appropriate on-off
pattern in the video RAM byte is 00110011. This is
encoded, in hexadeciml, as $33.

DSTART EQU $0600 ; Display start address
DSl ZE EQU 1024 ; Display size

DEND EQU DSTART+DSI ZE ; Display end address
DW DTH EQU 16 ; Display width in bytes
DBI TS EQU $33 ; Display bit pattern

ORG $4E21 ; Set up code address
PATGEN PSHS A B, X ; Save registers

LDX #DSTART ; Set up base address

LDA #DBI TS Set up pattern

LDB #DW DTH Set up wdth
NXTCOL STA 0, X+ generate pattern
DECB
BNE NXTCOL ; are we finished?
COVA ; yes, conplement pattern
LDB #DWwW DTH and reset row length

BLO NXTCOL no, do next colum
PULS A B, X, PC restore and return

Program 7.4 Checkerboard routine

CWMPX #DEND Reached end of display
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7.4.1 The col our graphics 1 node

This node provides a 64 elenment wi de by 64 elenent high
four colour graphics display and is referred to as the
1C mode. As the display screen is 256 by 192 pixels,
this nmeans that each elenment is 4 pixels by 3 pixels in
size. Gven that the code for 4 screen elements can be
held in each byte, the display nenory requirenent for
this node is therefore 1024 bytes.

The pattern generator programis set up initially in
this node. However, as the BASIC PMODE comrand does not
recognise this particular nmode, the SAM and VDG chips
have to be set up directly in the BASIC test rig by
poki ng values into their control registers. It is still
possible to wuse the SCREEN conmand to select the
graphics screen since this is independent of the node.
It is also possible to use one of the colour graphics
PMODEs (1 or 3) to set up the start page and PCLS to
clear the screen graphics display since the byte fornmat
is the sane. This does nean that 3072 (3C) or
6144 (6C) bytes wll be cleared when only 1024 bytes
need be but this is not usually a problem

The follow ng anendnents to Program 7.1 configure
the graphics hardware for the 1C node.

1010 PMODE 1,1

1022 POKE &HFFC1l,1 'Set VO in SAM
1024 POKE &HFFC2,0 'dear V1 in SAM
1026 POKE &HFFC4,0 'dear V2 in SAM
1028 POKE &HFF22, &H80 ' Configure VDG

The lines 1022-1028 are used to configure the VDG and
SAM directly and therefore override the PMODE 1
command.

7.4.2 The colour graphics 2 node

The display generated by this nmode is in four colours
on a 128 by 64 grid. Elenents are made up of 2 by 3
pixels and a total of 2048 bytes of video RAM is
required to support this nmode. To convert the
checkerboard generator to this nmode, the follow ng
equat es must be made:

DSI ZE EQJ 2048
DW DTH EQU 32

Agai n, the programmer nust configure the SAM and VDG
chips by the use of POKEs to set their control
registers. The anendnents to the BASIC test rig bel ow
set these devices for this node.

1010 PMODE 1,1

1022 PCKE &HFFCO, O

1024 PCKE &HFFC3, 1

1026 PCKE &HFFC4, 0

1028 POKE $HFF22, &HAO ' Configure VDG
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7.4.3 The col our graphics 3 node
This node considers the screen to be nade up of 128 by
96 elerments and, like all the colour graphics nodes,
can display up to four colours. The total video RAM
requirenent for this node is 3072 bytes or two high-
resol ution graphi cs pages.

To reconfigure the checkerboard program for this
node requires the follow ng redefinitions

DW DTH EQU 32
DSl ZE EQJ 3072

BASI C recogni ses this node so the hardware can be set
up using a PMDE 1 comrand.

7.4.4 The col our graphics 6 node
This is the highest resolution colour graphics node.
The screen is nmade up of 128 by 192 elenents and there
are four possible colours. Henents are each 2 by 1
pixels in size. The menmory requirenments for this node
are 6144 bytes which needs four high-resol ution
graEI)_hi CS pages.

he following alterations to the pattern generator
program are needed:

DSI ZE EBEQJ 6144
DWDTH EQU 32

Again, this node is recognised by BASIC and can be set
up by using a PMDE 3,1 conmand.

7.5 RESCLUTI ON GRAPH CS DI SPLAY MXDES

Resol ution graphics, as the name inplies, are nore
concerned with screen resolution rather than col our so,
in these graphics nodes, the colours are linted. The
display is black on a background colour or a foreground
col our on bl ack.

The background or foreground colours are green and
buff as shown in the table bel ow

CSsSs Col our RAM bit val ue
0 Bl ack 0
0 G een 1
1 Bl ack 0
1 Buf f 1

In resolution graphics, each elenent in the display is
controlled by a single bit which means that an el ement
can be one of two col ours.

The bit pattern used to define the checkerboard
consists of bits with alternating values, that is,
01010101, so for all resolution graphics nodes the
DBI TS constant in Program7.4 is set to $55.
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The general format of a video RAM byte for
resol ution graphics is shown in Figure 7.2.

E7 E6 E5 E4 E3 E2 El EO

Fig. 7.2 Resolution graphics byte format

There are four resolution graphics nopdes which are
given the names 1R, 2R, 3R and 6R These are the
resol uti on graphics equivalents of nodes 1C, 2C, 3C,
and 6C and each is described bel ow.

7.5.1 The resolution graphics 1 node
This npde generates a 128 elenment wide by 64 elenment

high two-colour graphics display. Each elenent is
controlled by a single bit in the video RAM byte and is
2 pixels by 3 pixels in size. The total nenory

requirements for this node are 1024 bytes. Like the 1C
node, this node is not supported directly by BASIC.

The pattern generator can be altered for this node
by redefining some of the constants as foll ows:

DSI ZE EQU 1024

The BASIC test rig nust be nmodified to set up the VDG
and SAM chips but a PMODE O conmand followed by a PCLS
will clear enough screen bytes for this node. The
followng anendnents to the BASIC test rig wll
configure the VDG and SAM chips for the 1R node.

1022 POKE &HFFC1,1 'Set VO in SAM
1024 POKE &HFFC2,0 'Cear V1 in SAM
1026 POKE &HFFC4,0 'Cear V2 in SAM
1028 POKE &HFF22, &H90 ' Configure VDG

7.5.2 The resolution graphics 2 node
This resolution graphics npde generates a display of
128 elements wide by 96 elements high. This means that
each element is 2 pixels by 2 pixels in shape. |Its
menory requirements are 1536 bytes or 1 high-resolution
graphi cs page.

The checkerboard program may be nodified for this
node by redefining the equates as foll ows:

DSI ZE EQU 1536

The 2R nmode is supported by BASIC and can be invoked by
i ssuing a PMODE 0 command.
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7.5.3 The resolution graphics 3 node
This nmode generates a 128 by 192 elenent display in tw
col ours. ch elenent is 2 pixels by one pixel and the
total menory requirenent is 3072 bytes.

To reconfigure the pattern generator for this mnode
only requires DSIZE to be equated to 3072. The node is
supported by BASIC as PMXDE 2.

7.5.4 The resolution graphics 6 node

This is the highest resolution node possible since each
pixel is controlled by a single bit in the video RAM
The display is arranged as a 256 by 192 pixel grid and
therefore the video RAM size required for this is 6144
bytes. To set up the checkerboard routine for this node
requires DSIZE to be equated to 6144 and the BASIC test
rig n&Jst be nodified so that a PMIDE 4 command is
i ssued.

7.6 SEM GRAPH CS DI SPLAY MXDES

As well as graphics and al phanuneric nodes, the VDG
chip has two Senigraphics nbdes where special - purpose
characters representing graphics synbols can be built
up and displayed on the screen. As the fundanental
display element is the character, it is possible to mx
t hese ?raphi cs characters wth nornmal al phanunerics
thus allowng text and graphics to appear together on
the Dragon's display. urthermore, the use of a
Sem graphics node allows the use of eight-col our rather
than four-col our graphics, thus opening up nore
creative possibilities for the graphics progranmrer.

The I n-bui |t Sem graphics  nodes are terned
Semgraphics 4 and Semgraphics 6 nodes wth the
associ ated nunber referring to the nunber of elenents
making up a graphics character. As well as these in-
built nodes, it is also possible to set up three
addi tional Sem graphics nodes (8, 12, 24) by setting
the VDG chip in alphanuneric node and the SAM chip in
2C, 4C, or 6C colour graphics node. Details of these
additional nmodes are briefly described bel ow and fully
described in Appendix 2.

Wien in Sem graphi cs node, each character is nade up
of a nunmber of elenments. The character organisation
for Semigraphics 4 node is shown as Figure 7.3. The
ot her nodes have a simlar pixel organisation although,
obviously, they offer higher resolution graphics as

each character is nmade up of nore elements. In all
cases, the horizontal width of an elenent is 4 pixels
but the vertical width varies from1l to 6 pixels. art

from the Semgraphics 6 node, all of the Sem graphics
nodes al | ow ei ght-col our graphics and use three bits in
each byte to represent the colour of the character
elements represented in that byte. Bits 4-6 in the
byte hold the colour information and the table below
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defines the <colours associated with each three-bit
col our val ue.

Col our Bit pattern
G een 000
Yel | ow 001
Bl ue 010
Red 011
Buf f 100
Cyan 101
Magent a 110
Or ange 111
4 4
L3 L2 6
L1 LO 6

Fig. 7.3 Semigraphics 4 character organisation

A Senigraphics byte is arranged so that bits 0-3 hold
the settings of character elements, bits 4-6 hold the
colour and bit 7 is the node bit. 1In Semgraphics 4
and 6 nodes, bit 7 is 1, in Semgraphics 8, 12, or 24
nodes, bit 7 is 0. Al elenents that are 'on' are
displayed in the colour specified in bits 4-6 and
el ements which are 'off' are displayed as black. There
is no way that elenents represented in the sanme byte
can take different col ours.

7.6.1 The Sem graphics 4 node

In Semgraphics 4 node, each character is split into 4
elements of size 4 by 6 pixels. A single video RAM
byte is therefore needed to hold each character where
bits 0-3 are naned LO-L3.

To experiment with this node, you mght like to
nodi fy Program 7.2 which nanipulates the INV bit in the
video RAM byt es. Rather than manipulate bit 6, you
mani pulate bit 7 using AND, OR and ECR instructions.
These will turn the Sem graphic node on and of f.

7.6.2 Sem graphics 6 node

The Sem grafphi cs 6 node splits each character into 6
elements of size 4 by 4 pixels giving a display
resolution of 64 horizontal y 48 vertical elenents.
Each elenent is controlled by a bit in the video RAM
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byte so, as a single byte is used for each character
position in this npbde, six bits of that byte are
required to encode elenment settings. This |eaves only
two bits (bits 6 and 7) for colour information so only
four colours nay be represented. As in the colour
graphics nodes, the setting of CSS determ nes which
col our set is used.

In fact, the nunber of colours available in this
node is even nore restricted as bhit 7 has a double
function as a colour coding bit and as a node settin
bit. In order to renmain In Semgraphics node, bit
nust always be set to 1 so this means that only blue
and red from colour set 0 and magenta and orange from
colour set 1 may be used.

7.6.3 The Sem graphics 8 node

The Semgraphics 8 node is the first of the extra
Sem graphi cs nodes which can be used by setting up the
VDG chip to al phanunmeric node and the SAM chip to one
of the colour graphics nodes. |In this node, a standard
8 by 12 pixel character is split into eight elenents of
4 by 3 pixels.

In order to set up the Semgraphics 8 node from
BASIC you nust issue a SCREEN 0,0 command to put the
VDG chip intoszu)hanuneric node then poke the bit value
Al into the control bytes as shown in the graphics
exanpl es above.

In this node, 4 bytes of video RAM are required to
represent each character position and only the bottom
two bits (LO and L1) are used to hold el ement settings.
As before, bits 4-6 hold the colour value and bit 7
should be set to indicate Sem graphic node. Bits 2 and
3 are not used but should be set so that bit 2 has the
sane value as bit 0 and bit 3 is the same as bit 1.

Each character is built up as 4 rows of 4 b%/ 3 pi xel
el ements. However, the bytes representing these rows
are not contiguous but are actually Sﬁaced 32 bytes
apart. The reason for this is that the SAM chip is
configured to a colour graphics node where the inmage is
built up row bgerow, wth each conplete row taking up
32 bytes. As m graphi ¢ el enents consist of a nunber
of rows, this nmeans that the bytes specifying the
el ement nust be set up at this spacing.

As four bytes are wused, it is possible to mx
elenent colours when using this node as, obviously,
each pair of elements in a byte has its ow colour
i nfornati on. Furthernmore, it also allows character
rows fromdifferent characters to be incorporated into
new characters and synbols. This means you can provide
facilities such as character underlining by swtching
to Sem graphics node at the appropriate tine.

However, using this facility requires great care as
you must build up each character individually with each
row of elements defined in a separate byte. You also
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have the problem of spacing character definition bytes
32 bytes apart as explained above so we recomrend that
you wite a programto help you organise byte layout if
you wish to use this facility.

7.6.4 The Sem graphics 12 node
In this mpde, the VDG chip is set to al phanumeric node
and the SAM chip to colour graphics 4C node. Each
character elenent is represented by twelve 4 by 2 pixel
el ements held in six bytes. As in the Sem graphics 4
node, only the bottom two bits per byte are used for
element settings and different bytes may be set to
di fferent col ours.

To set up this mpde, you nust issue a SCREEN 0,0
conmand from BASIC then poke the value 001 into the SAM
control bytes.

7.6.5 The Semi graphics 24 node

In this mbde, the SAM chip is set up to 6C npde and
each character elenment is made up of twenty four 4 by 1
pi xel elements thus giving a screen resolution of 64 by
192 elenments. A total of 12 bytes is required to hold
these elenent settings and, again, the colour of the
two elements represented in each byte may be set up
i ndependent|y.

To set up this mpde, you nust issue a SCREEN 0,0
conmand from BASIC then poke the value 011 into the SAM
control bytes.

7.7 GRAPHI CS UTI LI TI ES

So far we have shown how the various display nodes can
be set up from BASIC and we have assuned that this is
carried out before an assenbly code graphics routine is
cal | ed. Sometimes, setting up the display hardware
fromBASIC is neither possible nor desirable so in this
section we describe how BASIC commands such as SCREEN,
PMODE, PCLS, =etc. may be inplemented in assenbly
| anguage.

W have described, in section 7.1, the wvarious
hardware control bits and have explained that they are
set up via menory-mapped /O addresses. Remenberi ng

which bit means what is difficult, so it is good
practice to set up menmonic names for the various

control bit settings. A table of equates defining
these nanes, which we use throughout the remainder of
this chapter, is shown bel ow.

: VDG Pl A and SAM addr esses

VDGPI A EQU $FF22 ; Port B of PEA - VDG control
SAMWOC  EQU $FFCO Used to clear VO

SAMOS EQU $FFC1 Used to set VO

SAW1C EQU $FFC2 Used to clear V1
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SAW1S EQU $FFC3 ; Used to set Vi
SAW2C EQU $FFC4 ; Used to clear V2
SAW2S EQU $FFC5 ; Used to set V2
SAMFOC  EQU $FFC6 ; Base address of FO-F6

* VD@ PIA bit patterns - assumes CSS=0

*

ALPHAI EQU $00 ; Internal al phanumneric
ALPHAE EQU $10 ; External al phanuneric
MO DES4 EQU ALPHAI ; Sem graphics 4

MODES6 EQU ALPHAE ; Semi graphics 6

MODESS8 EQU MODES4 ; Sem graphics 8

MODS12 EQU MODES4 ; Semi graphics 12

MODS24 EQU MODES4 ;  Sem graphics 24
© Full graphics nodes

MODEIC  EQU $80 ; Graphics 1C
MODELIR  EQU $90 ; Graphics 1R
MODE2C  EQU $A0 ; Graphics 2C
MODE2R  EQU $BO ; Graphics 2R
MODE3C EQU $Q0 ; Graphics 3C
MODESR  EQU $DO ; Graphics 3R
MODE6C  EQU $EO ; Graphics 6C
MODE6GR EQU $FO ; Graphics 6R

Normal ly, the nodes of the VDG and the SAM chip are the
same but for some of the extra Sem graphics npdes they
must be set up differently. Therefore, rather than use
a single routine with conplex paraneters to set up
these devices, it is better to use tw separate
routines. The routine to configure the VDG chip is
called VDGMOD and the routine to configure the SAM chip
is SAMMOD. They are shown bel ow as Program 7.5.

* VDGMOD - sets up VDG chip

* Sets control lines AAG GMI-2, and CSS

*

* Register input A - configuration bit pattern

* to be witten to PIA

* Note only bits 3-7 of PIA are set so bits 0-2 nust

* be preserved

*

VDGMVOD PSHS A ; Preserve setup pattern
LDA VDGPI A ; Preserve bottombits
ANDA #7 ; of PIA register
ORA | S ; O in setup pattern
STA VDGPI A ; Setup VDG

. PULS A, PC ; Restore and return

© SAMMOD - Setup SAM chip

*

Register input A - bit pattern used to set up VDG
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BPL NOTGWD
CMPA  #MODE1C

Text node (B7=0)
no, is it 1C?

* In general, VO,V1,V2 in SAM are set up as GMD, 1, 2
* in VDG but there are three special cases:
* If AG = 0 then VOViv2 = 000
* If AG=1 and GVOGMLGM2 = 000 then VOV1V2 = 100
*If AG=1 and GVOGMLGM2 = 111 then VOV1V2 = 01|
SAMMVCD PSHS A ; Preserve VDG pattern

STA SAWCC ; Clear VO

STA SAW1C ; Clear V1

STA SAW2C ; Clear V2

ANDA #$FO0 ; Clear bottom4 bits of A

BNE NOT1C
ORA #$10 ; yes, special case->IR
NOT1C CVMPA #MODEGR ; Is it 6R
BNE NOT6R
ANDA #$EO ; yes, special case->6C
NOT6R ROLA ; CGet rid of AVG bit
BPL NOTGWR ; GV set?
STA SAW2S ; yes, set V2
NOT G2 ROLA ; get rid of GW2 bit
BPL NOTGM ; GWL set
STA SAWI1S ; yes, set V1
NOTGM ROLA ; get rid of GML bit
BPL NOTGWVD ; GWD set?
STA SAMVOS ; yes, set VO

NOTGVD PULS A, PC Restore and return

Program 7.5 VDG and SAM setup routines

These routines set up the SAM and VDG chi ps. Nor mal | y,
these devices are configured in the sane node so the
bit pattern defining the VDG s control bits is set up
in register A and each routine is called in turn.

* GMODE - sets up graphics hardware

* Register input A - VDG s control bit settings

*

GMCDE BSR VDGMVOD
BSR SAVMOD
RTS

You can use this routine in conjunction with the equate
table defined above to set up any of the graphics
nodes. You sinmply have to load the A register with the
node required then call GMODE to configure the VDG and
SAM chi ps. The exceptions to this are when Sem graphics
8, 12, or 24 nodes are to be set up when VDGMOD and
SAMMOD nust be called individually to configure the VDG
and SAM chips to different nodes.
For exanpl e:






