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Preface 
The advent of the microchip has resulted in the 
invention of a product which, ten years ago, was 
completely unthinkable. This product is the personal 
computer and there are now millions of families who own 
their own computer. This book is about one such 
machine, the Dragon. 

The Dragon is a second-generation personal computer. 
In contrast to early personal machines which were slow, 
had small memories and low-resolution monochrome 
displays, the Dragon offers a fairly large memory, 
high-resolution colour graphics, sound synthesis and a 
professional-quality keyboard. There are two versions 
of the Dragon available, the Dragon 32 and the Dragon 
64, and the material in this book is relevant to both 
of these machines. 

Personal computers are remarkable value for money. 
Most of them are more powerful than machines of the 
early 1960's which cost hundreds of thousands of pounds 
or dollars. Furthermore, personal machines are well-
built and reliable, much more so than early large 
computers. However, the weakest aspect of most 
personal machines is the descriptive documentation 
provided with the machine. Whilst this is no real 
hardship to those who only use their machine for game 
playing, the hobbyist who wishes to make the most of 
his machine has a tough time finding out technical 
details of his system. 

This book is intended for such readers and for those 
readers who have explored the BASIC programming 
capabilities of their machine and now want to go 
further. We do not assume any technical knowledge of 
computing apart from an ability to write and understand 
BASIC programs. Inevitably, this means we must include 
some introductory material which can be skipped by 
readers with experience in computing. 

When this book was written, the only Dragon 
available was the Dragon 32. As a result, the material 
here was written for that machine but most of the 
examples are equally relevant to the Dragon 64. Time 
has not permitted us to include Dragon 64 details in 
the text, but we have provided an appendix (Appendix 5) 
summarising the differences between the Dragon 32 and 
the Dragon 64. We have also included an appendix 



(Appendix 8) which covers details of the Dragon's disk 
operating system. 

Many readers will be aware that the Dragon and the 
Tandy Color Computer make use of the same M6809 
processor chip and the same BASIC system developed by 
Microsoft. As a result, much of the material here is 
also relevant to the Tandy machine and users of that 
system may be able to pick up useful hints and tips 
from it. 

The book is about the internal workings of the 
Dragon rather than about programming. We describe the 
M6809 processor which is used in the Dragon and show 
how machine code programs for that processor can be 
written in assembly language. We also describe the 
graphics system and the input/output system on the 
Dragon and, finally, we provide bits and pieces of 
technical information which may be valuable to the 
assembly code programmer. 

It is impossible for us to be comprehensive in our 
discussions of assembly code programming, graphics,or 
whatever. Rather, we provide Dragon-specific details 
rather than an extensive discussion of general 
techniques. We hope to encourage the reader to delve 
further into these application areas and we provide a 
reading list which will help you get more information 
about specific techniques. 

Printing programs in a book like this can sometimes 
be very untidy. Accordingly, we have taken some 
liberties with program commenting and have used lower 
case letters for commenting in all of our programs. We 
may also have made some other minor changes to the 
program layouts so that they are easier to read but the 
actual program code has not been changed. 

There are many people who have contributed in one 
way or another to the ideas and techniques presented in 
this book anongst them our colleagues at the Department 
of Computer Science, University of Strathclyde. We 
would also like to express our gratitude to those at 
Dragon Data Ltd., in particular to Tony Clarke, Richard 
Wadman and Derek Williams. Permission to use the 
Dragon logo in our examples was kindly granted by 
Dragon Data Ltd. 

Finally, special thanks must go to our families 
especially our wives Pauline Smeed and Anne Sommerville 
for their support, encouragement and tolerance of lost 
evenings and weekends throughout the writing of this 
book. 

Ian Sommerville 
Duncan Smeed 
August 1983 



Chapter 1 

Introducing the Dragon 

Every computer, be it mainframe, minicomputer or 
microcomputer, is made up of a very large number of 
electronic components which can be viewed at greater or 
lesser levels of detail. At the highest level, the 
computer can be considered as an organised collection 
of devices namely: 

(1) A processor. 
This is the device which actually carries out the 
computations (add, multiply, compare etc.) on 
elements of data. 

(2) A store. 
This is the device which is used to store infor­
mation so that it may be readily accessed by the 
processor. This information can be transferred 
to and from other system devices. 

(3) One or more peripheral controllers. 
Every computer needs some way of getting informa­
tion from and passing information to the outside 
world. This is accomplished through peripheral 
devices such as floppy disks, printers, key­
boards, video displays, etc. Each of these dev­
ices needs a controller built into the computer 
system to ensure that information is properly 
transferred to and from the processor and memory. 

(4) A clock. 
This is not a clock to tell the time but is real­
ly a pulse generator which ensures that the 
operation of all the other devices making up the 
system is synchronised. 

There are various different ways of connecting these 
devices together so that they operate as a computer. 
One of the most common interconnection techniques, 
particularly in minicomputer and microcomputer systems, 
is to connect all the system devices to a common data 
highway. This connection is sometimes called a bus. A 
diagram of such an interconnection is shown in Figure 
1.1 where P1, P2 , and P3 are peripheral controllers. 
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Fig. 1.1 Microcomputer organisation 

Notice that the clock has a separate connection to 
the other system components and that some of the 
peripheral devices are 'one-way' devices. For example, 
a printer is a write-only device - you can only 
transfer information to it, and a keyboard is a read-
only device - you can only transfer information from 
it. 

On microcomputer systems (like the Dragon), the 
processor is built onto a single microchip as are each 
of the peripheral controllers. The memory is normally 
built as a number of connected microchips. 

These chips are bonded into holders which have a 
number of pins sticking out of each edge. Some of 
these pins are connections to the data highway and 
others are connections to control lines (like the clock 
connection). The number of pins on a chip depends on 
the type of information which must be transferred and 
the number of control signals input and output. 
Normally, more complex chips, like microprocessor 
chips, have more pins than (relatively) simple 
peripheral controller chips. 

The next level down from the computer organisation 
is sometimes called the computer architecture. In the 
same way as a building has an architecture which is an 
overall structure tailored to the building's users, so 
too does a computer. In the case of a computer, 
however, the architecture is the structure as seen by 
computer programs running on the machine. Just as 
building architecture is seen as an organisation of 
rooms, corridors, walls, etc. rather than an 
organisation of elementary components such as bricks, 
floorboards and pipes, computer architecture is not 
concerned with basic electronic logic components. 
Rather, it is the collection of these components into 
larger functional units. 

The computer architect is mostly concerned with the 
design of the processor and how it can be set up to 
transfer information to and from other system 
components. The most important of these is the store. 
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Therefore, a major part of the architect's job is to 
design the processor so that it makes optimum use of 
the system's memory. 

In this chapter, we introduce basic ideas of how 
information is represented in a computer and we 
describe, in general terms, the principles of computer 
architecture. We then go on to describe the Dragon's 
hardware organisation and the chapter concludes with a 
description of how the Dragon's memory is used. 

1.1 INFORMATION REPRESENTATION 

At their most fundamental level, all the components of 
a computer are fabricated out of electronic switches 
which can only be in one of two states - they can be on 
or off. This means that the ideal way to represent 
information in a computer is as a binary pattern, a 
pattern of 1s and 0s. These patterns can represent 
numbers, characters, states of a device, colours, etc. 
As long as the interpretation of a pattern is known in 
advance, any information can be encoded in binary form. 

The most common use of binary patterns in a computer 
is to represent numbers. Binary numbers are numbers 
whose base is 2 and digits in a binary number represent 
powers of 2. For example, the binary number 

10010111 

can be converted to our more familiar decimal notation 
by considering it to be: 

l(27)+0(26)+0(25)+l(24)+0(23)+l(22)+l(21)+l(20) 

If we carry out these multiplications and additions, we 
find that the above binary number represents the 
decimal number 151. Starting from the right, each 
place in a binary number represents an increasing power 
of 2. This is a familiar idea which is the basis of 
all modern number systems. Decimal numbers, numbers 
whose base is 10, are organised so that each place 
represents a power of 10. Therefore, the number 3506 
can be considered as: 

3(103) + 5(102) + 0(101) + 6(10°) 

The number of distinct numerals needed to represent any 
number depends on the base of that number system. In 
general, if the number system base is m, m-1 distinct 
numerals plus zero are needed. Therefore, for the 
decimal system we need the numerals 1, 2, 3, 4, 5, 6, 
7, 8, 9, 0. For a hexadecimal system, whose base is 
16, these must be extended with extra symbols 
representing 10, 11, 12, 13, 14, 15 and the numeral set 
is 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0. The 
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binary system has a base of 2 so only a single digit, 
1, plus 0 is needed in the representation of any binary 
number. 

Normal arithmetic operations such as subtraction, 
addition, multiplication, and division can be carried 
out on binary numbers in exactly the same way as on 
decimal numbers. The following sums show examples of 
binary arithmetic. 

11001101 10011001 
+01101101 -00010111 

100111010 10000010 

The rules to remember are that 1 + 1 is 0 carry 1 and 
that 0 - 1 is 1 borrow 1. 

The other computations ( 0 + 0 = 0 , 1 + 0 = 1 , 1 - 1 = 
0, 1 - 0 = 1) are as you would expect and have no 
associated carry or borrow. 

Binary arithmetic is tedious and error prone for 
humans but, fortunately, is very straightforward for 
computers. It is relatively easy to build logic 
circuits which add binary numbers and, as we shall see 
later in this section, these are all that are required 
to implement all the arithmetic operations of add, 
subtract, multiply, and divide. 

Normally, when we write down numbers their length is 
unbounded. That is, each number can have as many 
digits as we like. The designer of a computer memory, 
however, doesn't have this flexibility. Computer memory 
is made up of many distinct cells each of which can 
store a fixed number of binary digits or bits. 
Normally, each cell stores 8 bits (a byte) and the 
number of bits used to represent a number must be a 
multiple of 8. Combinations of 2 or more bytes used to 
store numbers are usually called a machine word. 

The bytes in the computer's memory each have a 
unique address which distinguishes that byte from all 
others. Addresses are simply numbers which start at 
zero and increase by 1 for each byte. On a 
microcomputer like the Dragon there are 32768 bytes in 
user memory so addresses range from 0 to 32767. For 
convenience, memory bytes are divided into blocks of 
1024 (called 1K) so we say that the Dragon has 32K or 
64K bytes of store. 

An analogy can be drawn between a computer's memory 
and the lockers in a sports stadium. Each locker has a 
number (its address) which distinguishes it from all 
other lockers and items can be stored in the locker. 
The locker number doesn't affect what's stored in it 
nor does the memory address in a computer. The byte 
with address number 23456 can have any number in it. 
Just as the lockers in a stadium can have names 
associated with them as well as numbers (John Brown's 
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locker, Mary Jones's locker etc.) so too can memory 
bytes. Names are often more convenient than numbers 
when referring to memory bytes and we shall see in a 
later chapter how this facility can be used. 

On most microcomputers, the number of bits used to 
represent an integer (a number without a fraction) is 
16, with 32 bits used to represent real 
numbers (numbers with fractions). This means that 
integers occupy 2 memory bytes and real numbers occupy 
4 memory bytes. This size limitation restricts the 
magnitude of numbers which can be directly stored and 
manipulated by the computer and it is very important 
that the computer user bears this in mind when using 
his machine for numeric computations. 

However, the restriction on the number of digits in 
a number has a hidden advantage. It allows us to 
represent negative numbers in such a way that the 
operation of subtraction can be carried out by adding 
the numbers concerned. This representation of negative 
numbers is called two's complement representation. 

Complement arithmetic, which depends on numbers 
having a fixed, maximum number of digits, works with 
numbers of any base. The numbers involved, however, 
must have a special binary tag, called a sign bit, 
which indicates whether the number is positive or 
negative. Negative numbers have a sign bit of 1, 
positive numbers a sign bit of 0. 

We illustrate the principles of complement 
arithmetic using decimal numbers rather than clumsy 
binary numbers but we assume that the maximum length of 
a number is 3 digits. That is, we place the 
restriction on our number system that only numbers from 
0 to 999 may be represented. Say we want to carry out 
the subtractions 327 - 104 and 96 - 297. These are, of 
course, equivalent to the additions 327 + (-104) and 96 
+ (-297). The results of these additions are, in the 
first case, 223 and in the second -201. 

Positive numbers in complement notation are 
represented by the number itself with an associated 
sign bit of 0. Therefore, 327 is 0327 and 96 is 0096. 
The value of negative numbers in complement notation is 
formed according to the following formula: 

(maximum possible number)+l-(absolute number value) 

Therefore, where 999 is the maximum possible number, 
-104 and -297 have the following complement 
representations: 

(999 + 1 - 104) = 1896 
(999 + 1 - 297) = 1703 

Notice that we have added a sign bit (=1) to the left 
of the number to indicate that it is a negative number. 
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The subtractions above can now be carried out by adding 
the numbers in complement form. In the first case, 
0327 + 1896 = 2223. However, because the sign bit is 
always binary, 2 is actually '10' so we get an answer 
of '10'223. Because the length of the number is 
restricted, we throw away the 1 in the leftmost 
position to get the correct answer 0223. 

Similarly, 96 - 297 is 0096 + 1703 = 1799. This is 
a negative number (sign bit = 1 ) , so we must convert it 
back to our more conventional representation using the 
same formula as was used to convert to complement form. 
The conversion therefore is: 

-(999 + 1 -799) = -201 

This whole business might seem to be a bit of a fiddle 
with digits being discarded in an apparently arbitrary 
fashion and with binary and decimal numbers being mixed 
up in the sign bit and the number itself. However, it 
can be mathematically proven that complement arithmetic 
always works. The proof isn't relevant here - what is 
relevant is that two's complement works very well on 
computers and that it is very easy to form the two's 
complement of any binary number. 

To form the two's complement of a binary number, all 
the 1 bits are changed to 0 and all the 0 bits to 1. 
This operation is called complementing. One is then 
added to the number to get the two's complement 
representation. For example, the binary numbers 
01101100 and 00101101 have two's complements 10010100 
and 11010011 respectively. The leftmost bit is the 
sign bit and operations on it fit in naturally with 
other binary arithmetic. 

Notice, however, that the need for a sign bit 
reduces the maximum and minimum numbers that can be 
represented on a computer. On a machine which uses 16 
bits to represent integers, the leftmost bit must be 
the sign bit so only 15 bits are used for the number 
representation. This means that the largest positive 
integer on such a machine is 32767 and the largest 
negative integer is -32768. It is left as an exercise 
for the reader to work out why there is one extra 
negative number. 

Normally, microprocessors are only equipped with 
hardware units which allow them to add numbers 
together. Subtraction is implemented as described 
above and multiplication and division are implemented 
in software as sequences of repeated additions for 
multiplications and subtractions for division. 

So far, we have concentrated on the representation 
of numbers in a computer but character processing is at 
least as important as numeric computation for most 
microcomputer users. As we said at the beginning of 
this section, anything can be represented as a binary 
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pattern as long as we know how to interpret it so 
characters are normally held in a memory byte as an 8-
bit binary pattern. 

There exist a number of different conventions 
governing which patterns represent which characters but 
the most commonly used representation on microcomputers 
is the ASCII (standing for American Standard Characters 
for Information Interchange) representation. Under 
this system, 7 bits are used for character 
representation and the 8th (leftmost) bit is always 
zero. As well as codes for the upper and lower case 
letters, 'A'-'Z', 'a'-'z', the digits, '0'-'9', and 
punctuation characters the ASCII system also defines 
special unprintable characters meaning 'end of 
transmission', 'ring a bell', 'please acknowledge', 
etc. A table of characters and their associated ASCII 
values is provided in Appendix 6. 

1.1.1 Hexadecimal notation 
The sequences of 1s and 0s which make up binary numbers 
are very awkward for people to use. Because the 
numbers are so long, it is very easy to miss out a 
digit or to interchange a 1 and a 0. Naturally, this 
changes the value of the number and this can completely 
change the meaning of a computation. 

Ideally, it is best to work in terms of decimal 
numbers and names because these are the types of symbol 
that we learn to manipulate at an early age. However, 
it is, unfortunately, sometimes necessary to talk in 
the computer's terms, that is, in binary. A shorthand 
notation for binary numbers allowing us to write down 
binary equivalents in as few digits as possible reduces 
the number of errors which we make. Hexadecimal 
notation is one possible shorthand for binary numbers. 

Hexadecimal numbers are numbers whose base is 16. 
This means that the rightmost hexadecimal (hex for 
short) digit represents 0-15, the next digit represents 
the number of 16s to the power 1, the next the number 
of 16s to the power 2 and so on. As discussed earlier, 
we need 15 digits plus zero for a number system whose 
base is 16. The hexadecimal digits are: 

0 1 2 3 4 5 6 7 9 A B C D E F 

The number 10 is represented by A, 11 by B, 12 by C, 13 
by D, 14 by E and 15 by F. Some examples of 
hexadecimal numbers and their associated decimal values 
are: 

9 9 
1F 31 (16 + 15) 
23 35 (2(16) + 3) 
C7 199 (12(16) + 7) 
FF 255 (15(16) + 15) 
5BE 1470 (5(256) + 11(16) + 14) 
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It is very easy to convert from binary numbers to 
hexadecimal numbers and vice versa. Hexadecimal 
numbers represent values from 0 to 15 and this is 
exactly 2 to 2 - 1. We need 4 binary digits to make 
a hexadecimal digit so converting from binary to 
hexadecimal involves chopping the binary number into 
groups of 4 bits and then writing down the associated 
hexadecimal digit. For example: 

10110111010110111 16EB7 
1110011011011100 E6DC 

Conversion from hexadecimal to binary is equally easy 
as long as you memorise the binary patterns for the 
digits from 0 to F. These are: 

0 0000 8 1000 
1 0001 9 1001 
2 0010 10 1010 
3 0011 11 1011 
4 0100 12 1100 
5 0101 13 1101 
6 0110 14 1110 
7 0111 15 1111 

These patterns can be calculated very easily but after 
using binary and hexadecimal numbers for a while, you 
will find that you have, in fact, memorised them. Some 
examples of hexadecimal binary translations are: 

A1C4 1010000111000100 
4FFF 010011111111 
5670 0101011001110000 

As you read through the book, you will see lots more 
examples of hexadecimal numbers as we always use them 
in preference to binary when discussing particular 
representations. In particular, we always use 
hexadecimal numbers to refer to memory addresses so 
when you see an address of 433, say, this is 
hexadecimal 433 which is decimal 1075. 

1.1.2 Decimal arithmetic 
One of the problems which arise when binary arithmetic 
is used in a computer, where 16-bit words are used to 
store integer numbers, is that the maximum integer 
which can be represented is 32767 and the minimum 
integer is -32768. One way round this is to use so-
called 'decimal notation' where numbers are represented 
as a sequence of digits rather than in absolute binary 
form. 

From the table above, it is clear that the 
representation of the digits 0-9 requires that 4 bits 
be set aside for each digit. Therefore, each memory 
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cell can hold 2 digits. The table below shows examples 
of numbers represented in both decimal and binary form. 

Number Binary representation Decimal representation 
2 00000010 00000010 
55 00110111 01010101 
438 000110110110 010000111000 
2583 101000010111 0010010110000011 

There is a marked difference between the decimal and 
the binary representation of a number so special 
routines are required to perform decimal arithmetic. 
Although decimal numbers take up more space than their 
binary equivalents, they have the advantage that it is 
easier to write special routines to perform arithmetic 
on large decimal numbers than it is to write such 
routines for binary numbers whose representation 
requires more than 16 bits. The Dragon has an in-built 
instruction, called Decimal Adjust, to help the 
programmer in writing such routines. 

Although decimal arithmetic is very important for 
commercial applications programs, the hobbyist and 
scientific computer user has no real need of it. We 
have introduced it here for completeness but we do not 
use it in this book. Rather, we assume that all 
numbers may be represented as integers in the range 
-32768 to 32767. 

1.2 PROCESSOR ARCHITECTURE 

The central device in a microcomputer system like the 
Dragon is the microprocessor chip. The processor is 
that device which carries out all data transformations. 
That is, given input information, the processor can 
manipulate this and transform it to the output required 
by the programmer. The function of a computer program, 
be it in BASIC or some other programming language, is 
to define how the processor should transform its input 
into the appropriate output. 

The processor has an internal structure, its 
architecture, which consists of lower level components 
and their interconnections. As far as the programmer 
who wants to get the most out of his machine is 
concerned, the most important of these components are 
the processor registers. 

A register is simply an electronic device which can 
be used to store information. Usually, its width (the 
number of bits it can hold) is equal to or some 
multiple of the basic memory cell size. In the 
Dragon's processor, register widths are either 8 or 16 
bits and they can therefore hold 1 or 2 memory bytes. 

There are two important distinctions between a 
register and an ordinary memory byte or word: 
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(1) The processor can access information in a regis­
ter more quickly than it can access information 
in a memory cell. The reason for this is partly 
due to the way in which registers are constructed 
and partly due to the fact that a bus transfer 
between processor and memory is not required. 

(2) Registers may be connected, via an internal pro­
cessor bus, to other processor components which 
can transform information held in registers or 
which can recognise particular data patterns in 
the register. These patterns can be used to 
trigger corresponding actions by other processor 
components. The most important of these com­
ponents, which are present in every processor, 
are the arithmetic and logic unit (ALU) and the 
control unit. These are discussed later in this 
chapter. 

Registers in a processor may be classified as either 
general-purpose registers or as special-purpose 
registers. General-purpose registers may simply be 
thought of as extensions of the computer's memory. 
Normally, information which is accessed very frequently 
is held in such registers. It is up to the programmer 
to transfer frequently accessed information to 
general-purpose registers before it is accessed and to 
save it in memory when the register is needed for other 
purposes. 

Special-purpose registers may also be used to store 
frequently accessed information. However, instead of 
general information, that is, anything the programmer 
wants, being stored in such registers particular items 
of information are always held there. Other types of 
special-purpose register are accumulator registers and 
condition-code registers which are used as ALU input 
and output registers. 

The notion of an arithmetic and logic unit has 
already been introduced. This is a component whose 
function is to carry out arithmetic operations such as 
add, negate, etc. and logical operations such as 
compare, complement, etc. The particular operations 
available on the Dragon are described in a later 
chapter - you don't need to know these details to 
understand the general purpose of an ALU. 

Accumulator registers are those registers which may 
act as ALU inputs and outputs. It is not usual to 
connect all registers to the ALU. Rather, only one or 
two accumulator registers are directly connected to 
this unit and all traffic to and from the ALU must pass 
through these accumulators. 

When some arithmetic and logical operations take 
place, particular conditions resulting from these 
operations must be 'remembered' for subsequent 
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operations. For example, if two values are compared 
for equality, it must be remembered whether they are 
equal or not. Similarly, if an addition produces a 
carry, this must be remembered. It is the function of 
the condition-code register (CCR) to hold this kind of 
information for subsequent use by the programmer. The 
exact conditions noted in this register differ from 
machine to machine - the details of the Dragon's CCR 
are described in the following chapter. 

Although general arithmetic operations must all take 
place through the accumulator registers in a processor, 
it is sometimes possible to perform very limited 
addition and subtraction operations in other special-
purpose registers. These operations can take place 
automatically before or after the contents of a 
register are accessed. Typically, this auto 
increment/decrement facility allows 1 or 2 to be added 
or subtracted from the value in the register. This is 
particularly useful when using so called index 
addressing where a register contains the address of a 
memory location. Indexed addressing is fully described 
in the next chapter of this book. 

We have already introduced the idea that a computer 
program specifies how program input is transformed to 
the appropriate output. Writing a program in BASIC, 
say, is a convenient way for the user to specify this 
transformation but, at the processor level, a BASIC 
program can't be directly executed. 

Rather, a translation process must take place where 
the BASIC program is converted to a sequence of 
primitive machine instructions. This sequence 
specifies the information transfers between the 
computer's memory and the processor and the 
operations (add, compare, etc.) to be carried out on 
this information. 

Within the processor, the machine instructions 
always make use of the processor's registers. Some 
instructions are dedicated to data movement to and from 
memory, some to arithmetic and logical operations, and 
some to controlling the order of execution of the 
instruction sequence. 

Each instruction has a unique operation code (op­
code) which distinguishes that instruction from all 
others. This op-code is simply a binary number which 
is used by the control unit in the processor to 
determine which operation to carry out. As binary 
numbers (or even hexadecimal numbers) are alien to 
humans, we normally refer to instructions by means of a 
mnemonic related to the function of the instruction. 
Typical instruction mnemonics are: 

LD Transfer (LoaD) information into a register 
CLR Set a register to zero (CLeaR) 
INC Add 1 (INCrement) the contents of a register. 
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As well as an op-code, each instruction may have one or 
more address fields which specify the registers and/or 
memory locations used by the instruction. These address 
fields specify where the instruction can find the data 
on which it operates (its operands). They can be 
specified in a number of different ways (addressing 
modes) and an understanding of these addressing modes 
is vital for the programmer who wishes to write his own 
machine language programs. Because, they vary so much 
from machine to machine, addressing modes are not 
discussed further here but those of the Dragon's 
processor are covered in the following chapter. 

The machine instructions making up a program are 
themselves stored in the computer's memory and are 
fetched, one by one, from the memory to the processor. 
Each instruction may occupy one or more memory cells -
in the Dragon, for example, instructions may take up 1, 
2, 3, 4 or 5 bytes. 

The processor control unit fetches instructions from 
memory, identifies each instruction and initiates those 
components which actually carry out the specified 
operations. In every processor there is a special-
purpose register called the program counter (PC) which 
holds the memory address of the next instruction to be 
executed by the processor. 

There is no direct way for the programmer to affect 
the operation of the processor's control unit in its 
fetching and decoding of the machine instructions. 
However, the address in the PC register can be changed 
by the programmer thus allowing him to modify the order 
in which instructions are executed. This facility means 
that it is possible to repeat groups of instructions 
(loops) and to skip over one or more instructions if 
some particular condition holds (conditions). To the 
BASIC programmer, the familiar forms of these are FOR 
statements and IF statements. 

1.2.1 Stacks 
The machine instructions for a particular program are 
normally held in a linear sequence of cells in the 
computer's memory. This sequence may be accessed in any 
order by modifying the value of PC so that the 
instruction to be executed is the next one fetched by 
the processor's control unit. 

Sometimes it is also convenient to store and access 
data in the same way. You may normally access the data 
sequentially using a register to hold the address of 
the next data item to be selected. By modifying the 
value in this register, you can change this sequential 
data access pattern and get to any item of data which 
you need. 

On other occasions, however, it is convenient to 
restrict the way in which data is accessed. 
Restrictions of this sort are not arbitrary but are a 
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safety feature which reduces the chance of the 
programmer making mistakes. There are various 
different ways in which restrictions can be applied and 
the particular technique chosen must depend on the 
application being programmed. For a full discussion of 
these data structures the reader must look at the 
specialised texts on this topic such as those suggested 
in the reading list. However, one of these data 
structures is so important that you must understand it 
if you are to understand the rest of the book. This 
structure is the stack. 

Arranging data in a stack is a technique of limiting 
data storage and access so that the last data item 
placed on the stack is the only item which may be 
removed from the stack. Once this item has been 
removed, we can then get to the item below it, remove 
it, and so on. 

This can be imagined by comparing the data on the 
stack to a pile of plates in a restaurant kitchen. 
Assume that a dishwasher is adding plates to this pile 
after cleaning them and that a waiter is removing 
plates for serving food. The plate which the waiter 
takes from the pile is always the last plate put on the 
pile by the dishwasher. Like a data stack, the pile of 
plates is a last-in, first-out (LIFO) structure. Items 
are removed in the inverse order to that in which they 
are placed on the stack. 

Stacks are easily implemented in a computer system 
by reserving an area of memory for the stack and by 
associating a special-purpose register called a stack 
pointer (SP) with this memory area. The stack pointer 
always holds the address of the last item placed on the 
stack, that is, the top of the stack. When an item is 
added to the stack, the SP register is incremented and 
the item placed at this address. When an item is 
removed from the stack, the item pointed to by SP is 
first copied to a register and SP is then decremented 
to point at the new top stack element. 

In the traditional stack model, the base of the 
stack is at a low memory address and the stack grows 
upwards so that elements placed on the stack have 
increasing memory addresses. However, this is an 
arbitrary convention and it is equally straightforward 
to implement a stack which grows downwards in memory. 
This means that push in element on the stack involves 
decrementing the stack pointer and popping an element 
from the stack involves incrementing the stack pointer. 

Stacks in the Dragon are implemented in this way so 
that the base of the stack is at a high memory address 
with stack elements in successively lower addresses. 

We shall see in later chapters how stacks can be 
extremely useful to the programmer. They are so 
important that many processors (including the one built 
into the Dragon) provide special instructions to add 
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information to and remove information from the stack. 
These instructions are: 

PUSH This instruction copies one or more 
registers onto the stack and moves 
the stack pointer 'up' by the 
number of register bytes copied. 

PULL (or POP) This instruction copies one or more 
items from the stack into registers 
and moves the stack pointer 'down' 
by the number of bytes copied. 

The provision of instructions like these is one of the 
features of the Dragon which makes it such a powerful 
computer. 

1.3 THE ORGANISATION OF THE DRAGON 

We now move on from generalities and general principles 
of computer organisation to details of the organisation 
of the Dragon itself. Every microcomputer is inherently 
complex and the Dragon's hardware is made up of about 
20 microchips and their interconnections plus a power 
supply, peripheral device connectors, etc. The usual 
way of describing system hardware is by means of a 
block diagram showing the various hardware components 
and their interconnections. Figure 1.2 is such a block 
diagram of the Dragon's hardware organisation. 

As we suggested above, the hardware on a 
microcomputer system can be considered as being 
composed of three interacting subsystems. These are: 

(1) The processor 

(2) The memory 

(3) The input/output system 

The processor built into the Dragon is a single 
microchip which is designated the M6809E or, simply, 
the M6809. This is an advanced 8-bit processor which 
means that its data highways are 8-bits wide but it 
also makes provision for operations on 16-bit data 
elements. We shall not discuss any details of this 
system here as both Chapter 2 and Chapter 3 are devoted 
to the architecture of the M6809 processor. 

There is no explicit clock component shown in the 
block diagram although we explained in the previous 
section that the clock was an inherent part of every 
computer system. In fact, the box labelled 
'Synchronous address multiplexor' is a multi-function 
chip which includes a clock and which acts as the 
interface between the processor and the random-access 
memory. 
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The M6809 processor is designed to operate with data 
addresses of 16 bits so the maximum memory size which 
can be built into the Dragon is made up of 2 1 6 or 65536 
bytes. The term 1K is used to mean 1024 bytes so the 
maximum memory size on the Dragon is 64K bytes. The 
Dragon 32 actually has 48K of inbuilt memory with the 
capability to expand this to 64K using the cartridge 
slot. The Dragon 64 has 80K of in-built memory but 
only 64K may be in use at any one time. 

In the block diagram of the hardware, the units 
marked '32K Dynamic RAM' and '8K ROM' make up the 
memory of the Dragon. The two ROM (read-only memory) 
units hold the BASIC system and, because this memory is 
read-only, it is impossible to change any information 
stored in these units. However, you can read 
information stored there and we shall describe later 
how to make use of some of the BASIC system facilities 
by calling them directly from assembly code. 

The dynamic RAM on the Dragon 32 is the user's 
memory area which is used for the storage of BASIC and 
machine code programs, user data, etc. As the name 
implies, the Dragon 32 has 32K bytes available for this 
purpose whereas the Dragon 64 has twice as much 
available to the user. For many applications, 32K 
bytes is a perfectly adequate amount of memory but when 
complex disk operating systems are used, you really 
need 64K to get the most out of your machine. The way 
in which the use of memory is organised is very 
important and we describe the logical memory 
organisation of the Dragon 32 in a separate section 
below. 

The Dragon's input/output system controllers are the 
units labelled PIA0, PIA1, and VDG. These have 
associated peripheral interfaces to the keyboard, 
display, cassette, etc. The complexity of the I/O 
system is such that we cannot describe it adequately 
here so we have devoted a complete chapter to the I/O 
system (Chapter 8) later in the book. 

1.3.1 Memory organisation 
In a system like the Dragon, the memory is not simply 
considered as a single homogenous chunk to be used in 
some arbitrary way by the user or the BASIC system. 
Rather, decisions have to be made about which areas of 
memory are to be dedicated to which function and these 
decisions have to be clearly communicated to the 
system's programmers so that they know how to organise 
their own programs and data. 

The usual way to communicate this information is by 
means of a memory map which is simply a schematic 
diagram of how the system's memory is used. Like any 
map, this can be presented at greater or lesser levels 
of detail and the overall memory map of the Dragon 32 
is shown as Figure 1.3. 
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The 64K bytes of memory which is potentially available 
on the Dragon 32 can be looked at as being partitioned 
into eight distinct areas. 

(1) System variables 
This is the area of 1K bytes in RAM from address 
0000 to address 3FF. It holds various data values 
and I/O buffers used by the BASIC system. As 
these are in RAM, you may modify variables in 
this area but this must be done with care as in­
cautious modification can cause the BASIC system 
to fail and require that the machine be reset. 

(2) Text screen 
This is the 512 byte area from address 400 to ad­
dress 5FF whose contents are reflected on the 
user's display when graphics are not being used. 
The use of this area is described in Chapter 7. 

(3) Graphics screens 
The area of memory from address 600 to address 
3600 is used by the BASIC graphics system to im­
plement its graphics commands. Again, we 
describe the use of this area in Chapter 7. If 
graphics are not used or, if only limited graph­
ics are used, all or part of this area may be 
used for the storage of the user's BASIC program 
and its variables. 

(4) Program and variable store 
The area of memory from address 3600 to address 
7F36 is used for the storage of the user's BASIC 
program and its variables. 

(5) BASIC string store 
When character strings are used in a BASIC pro­
gram, the string characters are held in a 
separate storage area. This area extends from 
address 7F36 to the top address in the dynamic 
RAM, 7FFF. 

(6) The BASIC interpreter 
The 16K of memory required by the BASIC inter­
preter is provided as ROM on the Dragon 32 and is 
addressed from 8000 to BFFF. 

(7) Cartridge memory 
Memory addresses from C000 to FEFF are allocated 
to the cartridge slot on the Dragon 32. When you 
plug in a cartridge, this contains its own read-
only memory and this is addressed via these ad­
dresses . 
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(8) Input/output area 
The Dragon's I/O system is a 'memory-mapped' sys-
tem where reference to specific memory locations 
cause I/O operations to take place. Therefore, 
it is necessary to dedicate some memory locations 
to input/output and, in the Dragon 32, this I/O 
area is a 256 byte area at the very top of memory 
from address FF00 to address FFFF. Broadly, this 
area is partitioned into three separate parts. 
Addresses FF00 to FF5F are reserved for the use 
of peripheral controllers, addresses FFC0 to FFDF 
are used to control the synchronous address mul-
tiplexor and addresses FFF2 to FFFF are reserved 
for interrupt vectors. The other addresses in I/O 
area are unused and reserved for future system 
expansion. More details of the function of these 
I/O-dedicated addresses are provided in Chapter 
8. 



Chapter 2 

The architecture of the M6809 

The microprocessor used in the Dragon has been given 
the code number M6809 by its designers at Motorola 
Semiconductors. The M6809 processor developed from an 
earlier Motorola microprocessor, the M6800, and it 
shares some of the features of this earlier system. In 
fact, one of the design criteria for the M6809 was that 
it should be possible to run programs written for the 
M6800 on the M6809 processor. 

The M6809 is called an 8-bit processor, indicating 
that its data highways are 8 bits wide. This means 
that a simultaneous transfer of 8 bits of information 
can be made from the processor to and from memory and 
peripheral controllers. However, the M6809 also 
includes a number of instructions which operate on 16 
bits rather than 8 bits of data and this considerably 
increases the power of the processor. 

Such 16-bit instructions provide extra power because 
8-bit data manipulation is inadequate in many cases. 
For example, consider integer arithmetic. If only 8-bit 
representation is allowed this limits the range of 
integers to 0-255. This is clearly unacceptable in 
most cases so 16-bit arithmetic operations have to be 
simulated on an 8-bit machine by using combinations of 
8-bit instructions. Naturally, this slows down the 
execution of programs. 

The provision of many 16-bit operations of the M6809 
means that programs can be written using fewer 
instructions. Therefore, these programs execute more 
quickly. Because of these extra instructions and 
because of the variety of ways in which memory can be 
accessed, the M6809 is sometimes called a second-
generation microprocessor or, more extravagantly, the 
'programmer's dream machine'. 

In this chapter and in the following chapter we 
describe those aspects of the M6809 machine 
architecture which are of importance to the programmer 
who wishes to write machine language programs for his 
Dragon. This chapter covers the register organisation 
of the M6809, the multitude of ways in which machine 
memory may be addressed (addressing modes), and 
introduces some of the machine instructions available 
to the M6809 programmer. A description of all the M6809 
machine instructions is provided in Chapter 3. 

20 
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2.1 THE M6809 REGISTER SET 

In the previous chapter we introduced the idea of a 
register as a fast storage element built into the 
processor. The M6809 has nine such registers, all of 
which may be considered as special-purpose registers 
rather than general-purpose registers. Figure 2.1 is 
the so-called 'programming model' of the M6809. It 
shows, diagrammatically, the M6809's registers and 
their comparative sizes. 

Fig. 2.1 The programming model of the M6809 

The names of the M6809 registers, their width in 
bits, and a very brief description of their functions 
are listed below: 

(1) A register (8 bits) - accumulator register 

(2) B register (8 bits) - accumulator register 

(3) X register (16 bits) - index register 

(4) Y register (16 bits) - index register 

(5) U register (16 bits) - stack pointer register 
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(6) S register (16 bits) - stack pointer register 

(7) DP register (8 bits) - direct page register 

(8) PC register (16 bits) - program counter register 

(9) CC register (8 bits) - condition code register 

The bits in an M6809 register are numbered from right 
to left starting at 0. This means that bit 0 is the 
rightmost bit and, for 16-bit registers, bit 15 is the 
leftmost bit. Different machines have different 
conventions in this respect. Some processors number 
bits from left to right others, like the M6809, from 
right to left. 

2.1.1 The A and B registers 
The A and B registers are accumulator registers which 
are used to hold the operands and results of arithmetic 
operations. There are a variety of machine 
instructions which make use of these registers and 
examples of these are given below. 

The instruction examples in this chapter are set out 
according to the following general format: 

<machine code> (mnemonic) <operand> (comment) 

We use diamond brackets <> to mean 'an instance of' so 
(mnemonic) means any instruction mnemonic may replace 
the character string (mnemonic). We also use the 
notation MEM((address)) when referring to particular 
addresses in memory so MEM(A0E4) means the memory 
location whose address, in hexadecimal, is A0E4 and 
MEM(FRED) means the memory location whose symbolic 
address is FRED. All memory addresses are given in 
hexadecimal or are symbolic addresses unless explicitly 
stated otherwise. 

The machine code, in hexadecimal, is provided for 
each instruction example in this chapter. This is the 
actual code loaded into the M6809 memory whereas the 
instruction mnemonic and operand is a form of the 
instruction which is more understandable to the 
programmer. Most examples also have a brief 
descriptive comment explaining the function of that 
instruction. 

Examples of instructions which use the A and B 
registers are: 

860A LDA #10 ; A = 10 

1E89 EXG A,B ; Tmp = A: A = B: B = Tmp 

F7F1C5 STB $F1C5 ; MEM(F1C5) = B 
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5F CLRB ; B = 0 

8B02 ADDA #2 ; A « A + 2 

F0F1C5 SUBB $F1C5 ; B = B - MEM(F1C5) 

The A and B registers are both 8-bit registers which 
means that only a limited range of values, from 0 to 
255, may be stored in them. For many arithmetic 
operations we need to operate on larger or smaller 
values than can be represented in 8 bits so the 
designers of the M6809 have provided instructions which 
allow the register pair A:B to be considered as a 
single register. When the registers are catenated in 
this way, they are called the D register. 

Effectively, the A register makes up the leftmost 8 
bits of the D register (bits 8-15). This is sometimes 
called the hi-byte. The B register forms the rightmost 
8 bits of D (bits 0-7). This is called the lo-byte. 

Many of the machine instructions which operate on 
the A and B registers have counterparts which operate 
on the D register. However, rather than 8-bit 
operations which take place automatically when A and B 
are used, the use of the D register or, indeed, any 
16-bit register automatically results in 16-bit 
operations taking place. The address in the instruction 
refers to the leftmost (most significant) byte when 
16-bit operations are specified. For example: 

CC1000 LDD #4096 ; D = 4096 

F31E62 ADDD $1E62 ; D = D + MEM(1E62) 

FD0056 STD $56 ; MEM(56) = D 
* MEM(56) = hi-byte of D 
* MEM(57) = lo-byte of D 

We shall look at more instructions which operate on the 
A, B, and D registers when we describe the M6809 
instruction set in detail in Chapter 3. 

2.1.2 The X and Y index registers 
The X and Y registers in the M6809 may be used as 
general-purpose registers to store data but, more 
commonly, they act as special-purpose registers called 
index registers. 

The information which is normally held in an index 
register is the address in memory of some other data 
item which may represent anything at all, even another 
memory address. The M6809 has several ways of 
accessing memory which makes use of these index 
registers to determine the address in memory which is 
being used. 

Index registers are a particularly efficient way of 
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determining data addresses when data items stored in 
consecutive locations are to be accessed and processed 
in turn. The X and Y registers in the M6809 each have 
an associated auto-increment/decrement facility which 
means that a memory location can be accessed and, 
without additional instructions, the index registers 
can be updated to refer to the next item to be 
processed. 

This means that the most important use of the X and 
Y index registers is for array processing. The index 
register is set up to refer to the first item of the 
array and the auto increment/decrement facility used to 
select succeeding items in turn. 

The index registers may also be used as stack 
pointer registers if the user needs more than two 
stacks. The U and S registers are provided as stack 
pointer registers but the auto increment/decrement 
facilities of the X and Y registers means that they can 
also function efficiently in this role. 

Examples of instructions which use these index 
registers are: 

A684 LDA ,X ; A = MEM(X) 

A680 LDA ,X+ ; A - MEM(X): X = X + 1 

A682 LDA ,-X ; X = X - 1: A = MEM(X) 

ECA012C LDD 300,Y ; D = MEM(300 + Y) 

E7A6 STB A,Y ; MEM(A + Y) = B 

There are a number of other variants of index 
addressing available on the M6809. These will be 
discussed later in section 2.2.6. 

2.1.3 The U and S stack pointer registers 
The U and S registers are 16-bit registers which may 
act as index registers in exactly the same way as the X 
and Y registers described above. However, in many 
applications, these registers are best used as 
special-purpose stack pointer registers. Push and pull 
instructions are available to the programmer which 
assume that these registers are being used for this 
purpose. 

In practical use, the S register is almost always 
used as a stack pointer register referring to the so-
called S-stack or hardware stack. The hardware stack 
is used when calling subroutines and when swapping 
control from program to program. The state of the 
program which is interrupted is saved on this stack and 
restored when that program is restarted. This use of 
the hardware stack is described later in the book when 
interrupt-driven programming is described. 
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The U register may be used as a stack pointer to the 
so-called U-stack or user stack. However, the 
programmer may not need this facility in which case the 
U register may be used as an index register in exactly 
the same way as the X and Y registers. 

The M6809 stack convention is that stacks grow 
downwards in memory. That is, when an element is pushed 
onto the stack, the stack pointer is decremented before 
the push operation so that that element has a lower 
memory address than the previous top stack element. The 
stack pointer registers S and U always point at the top 
byte on the stack. In this respect, the M6809 is 
different from some other stack-based systems where the 
stack pointer refers to the next available location on 
the stack. 

Some examples of how the U and S registers may be 
used are: 

3602 PSHU A ; U = U - 1: MEM(U) = A 

3436 PSHS A,B,X,Y ; S=S-1: MEM(S)=Y: S = S-2 
* MEM(S)=X: S=S-2: MEM(S)=B 
* S=S-1: MEM(S)=A 

3536 PULS A,B,X,Y ; A=MEM(S) : S=S+1 : B=MEM(S) 
* S=S+2: X=MEM(S): S=S+2 
* Y=MEM(S): S=S+1 

3704 PULU B ; B=MEM(U): U=U+1 

The push and pull instructions for stack manipulation 
are described in more detail in Chapter 3. 

2.1.4 The DP register 
The M6809's DP (Direct Page) register is an 8-bit 
register which always contains the address of the start 
of a 256 byte chunk (page) of memory. This register is 
used exclusively in the so-called direct addressing 
mode. In this mode, the contents of the register are 
added to an 8-bit value specified by the user as part 
of the machine instruction to form the effective memory 
address. For example: 

96E9 LDA $E9 ; A = MEM(DP + E9) 

D710 STB $10 ; MEM(DP+10) = B 

2.1.5 The PC register 
The PC register is the M6809's program counter. It a 
16-bit register which always contains the address in 
memory of the next machine instruction to be executed 
by the M6809. 
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2.1.6 The CC register 
The CC register is an 8-bit condition code register 
where individual bits mark the occurrence of particular 
conditions. The bits in the register have the 
following functions: 

Bit 0 carry bit, set in arithmetic operations 
Bit 1 two's complement overflow bit 
Bit 2 zero bit, set when result of an operation or 

data transfer is zero 
Bit 3 negative flag, set when result of an 

operation or data transfer is less than zero 
Bit 4 normal interrupt mask, used by M6809 

interrupts 
Bit 5 half-carry flag, used to indicate a carry 

from bit 3 to 4 
Bit 6 fast interrupt mask, used by M6809 interrupts 
Bit 7 entire state saved flag, used by M6809 

interrupts 

The above descriptions of the flags in the CC register 
are very sketchy indeed but it is not appropriate to go 
into more detail here of what each flag means. Rather, 
we describe the role of individual condition code flags 
along with those machine instructions which set and 
test these flags. 

2.2 ADDRESSING MODES ON THE M6809 

One of the features of the M6809 architecture which 
distinguishes that microprocessor from earlier 
microprocessors is the variety of ways in which the 
address of a data item may be computed. In all, there 
are 19 distinct ways of representing an 
address (addressing modes) and the flexibility and 
power of these modes means that some applications may 
be coded very efficiently indeed on the M6809. 

The use of the various addressing modes is 
illustrated in Chapters 4 and 5. In this section we 
confine ourselves to a description of those modes and 
present examples of instructions which use these 
various modes. 

Before going on to look at addressing modes in 
detail, however, we must look at the structure of a 
machine instruction and examine how operand addresses 
are represented within instructions. Instructions in 
the M6809 may be 1, 2, 3, 4, or 5 bytes long depending 
on the particular instruction and on the addressing 
mode which is being used. Each instruction has two 
fields: 

(1) The op-code (1 or 2 bytes) 

(2) The operand address specifier (0, 1, 2 or 3 
bytes) 
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Notice that, in some cases, the operand address 
specifier may be empty, that is, it doesn't explicitly 
exist. For example, the instruction CLRA clears the A 
register - the inherent operand address in this case is 
the A register and may never be anything else. 

Most instructions, however, do have an address field 
which has the following general structure: 

(1) Postbyte (0 or 1 byte) 

(2) Value field (0, 1 or 2 bytes) 

The address field, called the 'postbyte', is not needed 
by all the M6809 addressing modes and it will be 
described along with those addressing modes which make 
use of it. Simpler addressing modes only need the 
'value' field to construct an operand address and some 
modes only require the postbyte field. 

2.2.1 Immediate addressing 
The simplest addressing mode on the M6809 is the 
immediate addressing mode where the instruction operand 
is a constant whose value is 'built in' to the machine 
instruction. When programming, immediate addressing is 
specified by preceding the constant to be included in 
the instruction with the symbol #. Some examples of 
immediate addressing are: 

C680 LDB #128 ; B = 128 (decimal) 

CC0400 LDD #1024 ; D = 1024 (decimal) 

108EFF00 LDY #$FF00 ; Y = FF00 (hex) 

Notice that a hexadecimal value is specified by 
preceding the immediate value with a $ sign. The # 
symbol must also be included to specify immediate 
addressing as a $ on its own has a completely different 
meaning. 

Although the instruction operand in immediate 
addressing mode must be an absolute hexadecimal 
constant, this can be generated by the assembler. Most 
assemblers allow the association of symbolic names with 
constants and also allow symbolic labels representing 
addresses. These may be used as immediate operands. 

2.2.2 Extended addressing 
In the extended addressing mode, the contents of the 2 
bytes following the instruction op-code are taken as 
the absolute address in memory of the instruction 
operand. Extended addressing is specified by preceding 
a numeric address (usually in hex) with the symbol $ 
or, alternatively, by writing the symbolic address of 
the operand being accessed. 

A symbolic address is simply a name given to a 
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particular address location. This idea was introduced 
in section 1.1.2 and it is by far the most convenient 
way to refer to actual addresses in the Dragon's 
memory. When a symbolic address is encountered in an 
instruction, the assembler replaces it with its actual 
numeric memory address. The assembler also handles the 
conversion of mnemonics to machine code, the conversion 
of decimal and hexadecimal numbers to binary, etc. 

Examples of the M6809 extended addressing code are 
given below along with their corresponding machine code 
representations. Assume that the symbolic names CHAR1 
and PNTR have addresses A000 and A008 respectively. 

B7A000 STA CHAR1 ; MEM(CHAR1) = A 

BEA008 LDX PNTR ; X = MEM(PNTR) 

BB03A2 ADDA $03A2 ; A = A + MEM(03A2) 

2.2.3 Direct addressing 
Recall from our description of the M6809 registers that 
the processor has an 8-bit register called the Direct 
Page or DP register which always contains the address 
of the start of a 256 byte chunk (page) of memory. This 
register is used in the direct addressing mode. 

In this mode, the address of an operand is computed 
by taking the value contained in the instruction 
itself (00-FF) and using this as the lo-byte of the 
operand address. The hi-byte is taken as the value of 
the DP register. Direct addressing is used whenever the 
address lies in the range 00 to FF since the DP 
register normally contains 00. Direct addressing can 
be forced by preceding the address with a '<' symbol in 
which case it it is essential that the DP register is 
set up with the address of the starting byte of the 
memory 'page' being accessed. 

Registers are normally assigned values using load 
instructions but there is no load instruction which 
assigns a value to the DP register. Rather, some other 
8-bit register must be assigned a value and its 
contents then to the DP register using a TFR 
instruction. For example: 

8610 LDA #$10 ; A = 10 (hex) 

1F8B TFR A,DP ; DP = A 

Examples of the use of direct addressing are: 

DD20 STD $20 ; MEM(1020) = D 

9000 SUBA $00 ; A = A - MEM(1000) 

The use of direct addressing means that instructions 
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are short (mostly 2 bytes) and this means that programs 
are efficient in both execution speed and in the 
storage required for the program. There are also 
advantages in using this mode of addressing when 
implementing programming languages like Pascal where 
global variables may be stored in a page by themselves 
and accessed via the DP register. 

2.2.4 Register addressing 
Register addressing is an addressing mode where the 
instruction operands are always in registers with a 
postbyte used to identify the registers involved. There 
are only two instructions which make use of this 
addressing mode. These are the transfer register 
instruction (TFR) and the exchange register instruction 
(EXG) . The address field is simply a postbyte which is 
split into two parts. Bits 0-3 of the postbyte 
identify the destination register and bits 4-7 identify 
the source register. The identification value, in 
hexadecimal, for each register is: 

0 D register 5 PC register 
1 X register 8 A register 
2 Y register 9 B register 
3 U register A CC register 
4 S register B DP register 

Using the TFR and EXG instructions, it is only possible 
to transfer and exchange registers of like size (8 or 
16 bits). Examples of instructions using the register 
addressing mode are: 

1F12 TFR X,Y 

1E89 EXG A,B ; Tmp = B: B = A: A = Tmp 
* where Tmp is some temporary register 
* hidden from the M6809 user 

2.2.5 Indirect addressing 
Some kinds of programming are made easier if you can 
refer indirectly to information which you want to 
manipulate. That is, you don't include the address of 
the instruction operands in the instruction but the 
address reference in the instruction is to a location 
which holds the actual operand address. 

Normally, the address part of a machine instruction 
directly refers to its operand. For example: 

LDD MAXVAL 

loads the data stored at symbolic address MAXVAL into 
register D. With indirect addressing, however, the 
address part of the machine instruction holds the 
address of the address of the instruction operand. 
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Address computation is therefore a two-stage process. 
First, compute the address as specified in the machine 
instruction. Secondly, use this to locate the operand 
address then use this address to fetch the operand 
itself. 

This is illustrated in Figure 2.2. 

Fig. 2.2 Indirect addressing 

It is important to remember that the use of indirect 
addressing means that the two-stage process described 
above always takes place. The effect of an instruction 
using indirect addressing is exactly the same as the 
same instruction using direct addressing inasmuch as 
the operand value, not its address, is manipulated by 
that instruction. 

Indirect addressing can be used with a number of the 
M6809 addressing modes but, of the modes which we have 
described so far, it is only possible with extended 
addressing. In this case, and in all other cases where 
indirect addressing is allowed, indirect addressing is 
specified by surrounding the address part of the 
instruction with square brackets. For example, say a 
value 00E4 is stored at address 32F0. Furthermore, 
assume the symbolic address MAXADD has a value of 10A4 
and is set up to refer to the value 00E4. The 
instruction 

CC9F10A4 LDD [MAXADD] 

specifies that the value in MAXADD is actually the 
address of the value to be loaded into the D register. 
Therefore, the effect of LDD [MAXADD] would be to copy 
00E4 into register D. The actual address reference in 
the instruction is to address 10A4 which holds the 
value 32F0 - the location where 00E4 is stored. 

This has illustrated how indirect addressing is used 
in conjunction with the extended addressing mode but it 
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may also be used with indexed addressing which is 
described below. In indexed addressing, where a 
postbyte is an inherent part of the address, bit 4 of 
the postbyte is used to indicate whether the address 
reference is direct or indirect. If bit 4 is set, the 
address is taken as in indirect reference to the 
instruction operand. 

2.2.6 Indexed addressing 
We have already described how some of the registers in 
the M6809 may be used as index registers where the 
address is computed by adding or subtracting some value 
from the value in the index register. There are a 
variety of different types of indexed addressing 
available to the M6809 programmer and these are all 
described in this section. 

The format of an address in an instruction using 
indexed addressing is: 

(1) Postbyte (1 byte) 

(2) Offset (0, 1 or 2 bytes) 

The postbyte is set up to indicate which register is 
the index register, whether that register is to be 
automatically incremented or decremented and to specify 
the form of the offset to be added to the value in the 
index register. 

The forms of indexed addressing which we shall 
describe here are: 

(1) Zero offset indexed addressing 

(2) Constant offset indexed addressing 

(3) Accumulator offset indexed addressing 

(4) Auto increment/decrement indexed addressing 

Before describing these addressing modes in detail, 
however, let us look at the structure of the postbyte 
which determines the actual addressing mode used and, 
in some cases, holds the offset which modifies the 
index register value. 

Bit 7 (the leftmost bit) of the postbyte specifies 
whether an offset is stored as part of the postbyte. 
If this bit is unset, bits 0-4 are taken as a 5-bit 
signed offset in two's complement form. This means 
that values between -16 and 15 may be held as part of 
the postbyte and automatically added to the index 
register. 

If bit 7 of the postbyte is set, this means that a 
5-bit offset is not part of the postbyte and that bits 
0-4 have a completely different meaning. In this case, 
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bits 0-3 are used to specify which type of indexed 
addressing is to be used and bit 4 is used to select 
direct or indirect indexed addressing. The 
correspondance between addressing modes and associated 
values of bits 0-3 is set out in the table below. 

Bit 4 is the indirect select bit. If it is unset, 
this indicates that the computed address is the address 
of the instruction operand. If it is set, this means 
that the computed address is to be taken as the address 
of the address of the instruction operand. 

In all types of indexed addressing, bits 5 and 6 of 
the postbyte are used to specify which index register 
is being used. Each value of this bit pair specifies a 
different index register as follows: 

X Bit 6 = 0 , Bit 5 = 0 
Y Bit 6 = 0 , Bit 5 = 1 
U Bit 6 - 1 , Bit 5 = 0 
S Bit 6 = 1 , Bit 5 = 1 

When bit 7 is 1, bits 0-3 of the postbyte select the 
addressing mode to be used. The values of these 
bits (in hexadecimal) and their corresponding 
addressing modes are shown in the table below: 

0 

1 

2 

3 

4 

5 

6 

7 

Auto increment (+1) 

Auto increment (+2) 

Auto decrement (-1) 

Auto decrement (-2) 

Zero offset 

ACCB offset 

ACCA offset 

Not used 

The index register is 
incremented by 1 after 
the address is computed. 

As above, increment is 2. 

The index register is 
decremented by 1 before 
the address is computed. 

As above, decrement is 2. 

The address in the index 
register is the operand 
address. 

The address is computed 
by adding the contents of 
register B to the index 
register contents. 

As above, but the 
contents of register A 
are added to the index 
register. 



8 

9 

A 

B 

C 

D 

E 

F 

8-bit signed offset 

16-bit signed offset 

Not used 

ACCD offset 

PC relative, 

PC relative, 

Not used 

Extended indirect 

The value of the byte 
following the postbyte is 
added to the index 
register to compute the 
address. 

As above, but the 
following 2 bytes are 
added to the index 
register. 

The value of accumulator 
D (A:B) is added to the 
index register. 

The PC acts as an index 
register, with the 
address computed by 
adding an 8-bit offset to 
its value. 

As above with 16-bit 
offset. 

The following 2 bytes are 
the address of the ad­
dress of the instruction 
operand. 
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We have already covered extended indirect addressing 
and addressing using the program counter PC will be 
discussed in section 2.2.7. Now let us look in more 
detail at the possible indexed addressing modes. 

Auto increment/decrement indexed addressing 
This addressing mode allows 1 or 2 to be automatically 
added or subtracted from the index register value. No 
additional add or subtract instruction is necessary to 
accomplish this. When using auto increment addressing, 
the value is added to the index register after the 
effective address has been computed. In auto decrement 
mode, the value is subtracted from the index register 
and the effective address then computed. 

Examples of instructions using this addressing mode 
are: 

A7C0 STA ,U+ ; MEM(U) = A: U = U + 1 

ECA1 LDD ,Y++ ; D=MEM(Y): Y = Y + 2 
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AB82 ADDA ,-X ; X = X - 1 : A = A + MEM(X) 

A3E3 SUBD ,--S ; S = S - 2 : D = D - MEM(S) 

Auto increment/decrement indexed addressing is 
particularly efficient when a number of data elements 
have to be processed in sequence. The index register 
is set up to point at the beginning or the end of the 
sequence in memory and, after each element is fetched, 
the register is incremented or decremented so that it 
points at the next element in the sequence. 

Zero offset indexed addressing 
Using this addressing mode, the value in the index 
register is taken to be the address of the instruction 
operand. Nothing is added to or subtracted from it. 
For example: 

A684 LDA ,X ; A=MEM(X) 
EDF4 STD [,S] ; MEM(MEM(D)) = D 
* Note [] meaning indirect addressing 

Constant offset indexed addressing 
In this case, a positive or negative constant is added 
to the value in the specified index register to compute 
the address of the instruction operand. The range of 
possible offsets is from -32768 to 32767 (decimal) and 
the assembler works out whether the offset is to be 
stored as part of the postbyte (-16->15), as an 8-bit 
quantity (-128->127) or as a 16-bit quantity (-32768-
>32767). If the offset is not stored in the postbyte, 
it immediately follows the instruction postbyte in 
memory. 

Although a constant value is added to the index 
register value to compute the operand address, this 
modified value is not stored in the index register. 
The addition is purely temporary and the index register 
value is not changed by the use of constant offset 
addressing. Examples of instructions using this 
addressing mode are: 

EC7A LDD -6,S ; D = MEM(S-6). 
* Note offset stored in postbyte 
* in two's complement form 

AB8816 ADDA 22,X ; A = A + MEM(X + 22) 
* Offset stored as a 1 byte value 

AB89012C ADDA 300,X ; A = A + MEM(X + 300) 
* Offset stored as a 2 byte value 

Accumulator offset indexed addressing 
This addressing mode is similar to constant offset 
indexed addressing but, rather than the offset being a 
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constant, the value of an accumulator register is added 
to the index register to compute the address. The 
advantage of this is that the offset can be calculated 
and loaded into the accumulator just before it is 
required. The programmer need not know the offset in 
advance as in constant offset indexed addressing. 

Examples of this addressing mode are: 

E7A6 STB A,Y MEM(A + Y) = B 

ECB8 LDD D,X D = MEM(D + X) 

2.2.7 Relative addressing 
Another mode of address computation in the M6809 is 
relative addressing where the address of an operand or 
of another instruction is computed by adding an offset 
to the program counter register. This offset may be a 
positive or negative, 8-bit or 16-bit value. We shall 
look first at how instruction operands are accessed 
using this addressing mode and then at the relative 
addressing of instructions themselves. 

Relative addressing of instruction operands makes 
use of the postbyte in the same way as does indexed 
addressing. If bits 0-3 of the postbyte are C or D 
while bit 7 is set this specifies that the addressing 
is PC relative. For example: 

AE8C08 LDX 8,PCR ; X = MEM(PCR + 8) 

DD8D0400 STD 1024,PCR ; MEM(PCR + 1024) - D 

A very important advantage of using PC relative 
addressing is that it simplifies the writing of 
position independent code. Position independent code 
is code which works in exactly the same way 
irrespective of where that code is placed in memory. 
Such code must make extensive use of relative and 
indexed addressing because extended addressing means 
that the instruction operands must always be at the 
address 'built in' to the code. 

With position dependent code, you must always load 
the program into exactly the same memory locations as 
were used previously. This is not necessarily 
convenient or even possible so it is good programming 
practice to write all programs in a position-
independent way. 

Relative addressing of the instructions in a program 
is accomplished by means of so-called 'branch 
instructions'. The effect of these branch instructions 
is to modify the program counter register. Thus the 
next instruction executed is not necessarily the 
instruction following the branch instruction but some 
other instruction whose address is computed by adding 
the specified offset to the value of PC. The relative 
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addressing of instructions is different from the 
relative addressing of operands inasmuch as the value 
stored in PC is modified whereas in operand addressing 
the value of PC is used but is unchanged by the address 
computation. 

The computation of relative instruction offsets is a 
tedious and error-prone task. Usually, it is left to 
the assembler to work out the appropriate value to be 
added to PC. You may mark instructions with a name (a 
label) and use this name as part of the branch 
instruction. The assembler knows the number of bytes 
occupied by each instruction so it can work out the 
appropriate offset to allow a transfer of control to 
the labelled instruction. 

This can be illustrated by a short assembly code 
sequence which is equivalent to the following BASIC 
statement: 

IF VL > MAX THEN MAX = VL 

Assume that VL and MAX are 16-bit quantities held at 
addresses A000 and A002 respectively. The assembly 
code equivalent to the above BASIC conditional is: 

FCA000 LDD VL ; D = MEM(VL) 
10B3A002 CMPD MAX ; Compare D with MEM(MAX) 
2F03 BLE NEXT ; If VL<=MAX goto NEXT 
FDA002 STD MAX ; MEM(MAX) = D 
NEXT .... 

The branch instruction in the above sequence, BLE, 
modifies the value of PC if and only if VL is less than 
or equal to MAX. Notice that the value in the PC 
modification field is 3, the number of bytes in the STD 
instruction. It is not the number of bytes in the BLE 
instruction plus the number of bytes in the STD 
instruction. The reason for this is the PC always 
points to the next instruction in the instruction 
sequence rather than the instruction which is being 
executed. 

There are many branch instructions available to the 
M6809 programmer. They are discussed in detail in 
section 3.5 of the following chapter. 

2.3 MEMORY-MAPPED INPUT/OUTPUT 

We have seen, in Chapter 1, that a computer 
organisation includes a number of units which are set 
up as peripheral control devices to allow information 
to be transferred to and from the processor and memory 
units. Obviously, the processor must have access to 
these controllers in order to initiate data transfers 
to and from the outside world. In this section we 
describe, in very general terms how this is done. 
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However, as it is such an important topic we devote a 
complete chapter to details of input and output later 
in the book. 

Recall, from Figure 1.2, that the M6809 processor, 
memory and peripheral controllers all have access to a 
common data highway or bus. On M6809-based systems 
such as the Dragon, this bus is 24 bits wide. This 
means 24 bits of information can be simultaneously 
transferred from device to device. Of these 24 bits, 
16 bits are reserved for the data address and 8 bits 
are used to transfer the data itself. 

In the same way as all memory locations have a 
unique address, so too must input/output (I/O) devices 
connected to this shared bus. On some systems, the bus 
has an extra line indicating that the address on the 
bus is a peripheral rather than a memory address but 
this is not the case on M6809 systems. Rather, the 
addresses of I/O devices have exactly the same form as 
memory addresses with specific addresses reserved for 
these I/O devices. These memory addresses may not be 
used for straightforward data storage as they are 
allocated to particular I/O devices. 

This is not a severe handicap as there are usually 
only a few I/O devices on any system. On the Dragon, 
there are 256 memory bytes reserved for use by the I/O 
system. These are at the top end of memory between 
FF00 and FFFF. If we access one of these addresses 
which is allocated to an I/O device, the effect of the 
access is to initiate a data transfer to or from that 
peripheral unit. The synchronous address multiplexor 
examines addresses on the bus and detects those which 
refer to I/O controllers. The data is then routed to 
these devices for input or output. 

This type of I/O organisation where peripherals are 
associated with specific memory addresses is called, 
for obvious reasons, memory-mapped I/O. It is a 
conceptually elegant way of carrying out input and 
output as there is no need for specific instructions to 
initiate peripherals and all instructions which 
reference memory may be used to access the system's I/O 
devices. Full details of the Dragon's I/O system are 
provided in Chapter 8 and in the appendices. 



Chapter 3 

The M6809 instruction set 

In Chapter 2 we described the general features of the 
M6809 architecture and introduced, without a great deal 
of explanation, some of its machine instructions. A 
thorough knowledge of the machine instruction set is 
vital for the machine code programmer so this chapter 
is completely dedicated to a description of the M6809 
instruction set. 

At this point, we must emphasise the distinction 
between machine instructions and assembly language 
mnemonics. Machine instructions are the actual binary 
op-codes executed by the processor as it runs a 
program. Assembly language instructions are the 
mnemonics and names used by the programmer to symbolise 
these machine instructions because It is much easier 
for us to think in symbols and names rather than 
numbers. 

There is not necessarily a one-to-one correspondence 
between machine instructions and assembly language 
instructions. For example, on the M6809 there are 
over 1400 distinct machine instructions when we take 
into account all the different combinations of op-code 
and postbyte that are permitted. Fortunately, however, 
there are only 59 distinct instruction mnemonics which 
must be remembered by the assembly language programmer 
along with the register names and the symbolism 
associated with the different M6809 addressing modes. 
Combinations of these allow all possible machine 
instructions to be represented. 

The reason for the enormous discrepancy between the 
numbers of assembly language and machine code 
instructions is that many assembly language 
instructions have variants for each of the machine 
registers and for each addressing mode allowed with 
that instruction. For example, the instruction 
specifying that a register is to be loaded with an 
immediate value has the form: 

LD<register> <value> 

This is all that need be remembered by the assembly 
language programmer. However, there are seven distinct 
machine language op-codes associated with this 
instruction, one for each register that may be directly 
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loaded. The assembly code mnemonics for these are LDA, 
LDB, LDD, LDX, LDY, LDU, and LDS. These have 
associated op-codes of 86, C6, CC, 8E, 108E, CE, and 
10CE. 

All of these load instruction mnemonics have a 
different op-code associated with each permitted 
addressing mode. For example, if immediate addressing 
is used with an LDA instruction the op-code is 86. If 
direct addressing is used, the op-code is 96, for 
indexed addressing the op-code is A6 and for extended 
addressing B6. Instructions which load the other 
registers also have distinct op-codes for each 
addressing mode so, in all, the LD instruction mnemonic 
has 28 distinct machine instructions which may be 
derived from it. If we consider postbytes to be part of 
the instruction, this gives many more machine language 
derivations from an assembly language load instruction. 

It is practically impossible to program directly in 
machine language because of the enormous number of op­
codes that must be remembered by the programmer. 
Normally, an assembler is used to carry out the 
tedious task of translating mnemonics to op-codes, 
working out relative offsets and constructing 
postbytes. At worst, if an assembler is not available, 
the programmer should write his program in assembly 
code as if an assembler is at hand and then translate 
manually to machine code. Attempting to program 
directly in machine code inevitably leads to 
frustration, boredom and many errors. 

A complete table of assembly language mnemonics and 
their associated machine op-codes is provided in 
Appendix 1. It must be emphasised, however, that hand 
translation from assembly code to machine code is not 
recommended for anything apart from very short 
programs. 

The instructions available to the M6809 programmer 
can be considered under seven distinct headings. These 
are: 

(1) Data movement instructions 
Instructions which transfer information to and 
from registers and memory. 

(2) Arithmetic instructions 
Instructions used to implement arithmetic opera­
tions such as add and subtract. 

(3) Logic instructions 
Instructions used to execute logic operations 
such as or and shift. 

(4) Test instructions 
Instructions which set flags in the condition 
code register depending on operand values. 
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(5) Branch instructions 
Instructions which affect the normal sequential 
flow of control in a program by modifying the 
value of PC. 

(6) Interrupt handling instructions 
Instructions used to handle so-called interrupts 
which usually arise from peripheral devices in 
the system. Interrupts are described in Chapter 
8. 

(7) Miscellaneous instructions 
Any other instructions which don't fit under the 
above headings. 

Many data movement, arithmetic, logic and test 
instructions have the effect of setting or unsetting 
particular bits in the condition code (CC) register. In 
particular, if the result of executing an instruction 
is zero, the zero (Z) flag in CC is always set. If the 
result is negative, the negative (N) flag in CC is 
always set. 

Arithmetic, logic and test instructions may also 
change the value of the carry (C) flag, the half-
carry (H) flag and the overflow (V) flag in the 
condition code register. Some of these are described 
later in this chapter under the appropriate headings. 
This description is not complete - full details of how 
instructions affect CC flags are provided in Appendix 
1. 

In the following description of the M6809 assembly 
code instructions, it is sometimes necessary to refer 
to particular CC flags. We use a dot notation, 
CC.<flag letter>, to make these references. Thus CC.N 
is the negative flag, CC.V is the overflow flag, etc. 
When we say a flag is set this means that its value is 
1, when unset the flag value is zero. 

In the remainder of this section and in subsequent 
chapters, we sometimes use BASIC statements to explain 
the meaning of assembly language instructions. We have 
done this informally until now but, from now on, we 
will use the following conventions. 

(1) Registers are indicated by BASIC variables with 
the same name as the register. Therefore, the 
names of the registers are A, B, D, X, Y, U, S, 
DP, CC, and PC. 

(2) The use of some other BASIC name refers to the 
location in memory which has that symbolic name. 
Therefore an assembly code instruction, LDD XVAL, 
might be commented with the BASIC statement, D = 
XVAL. 
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(3) When an absolute address in memory is referenced, 
we consider memory as a one-dimensional array 
called MEM and use the absolute address as an ar­
ray index. Therefore, MEM(A034) refers to the 
memory location whose address, in hexadecimal, is 
A034. We also use the same notation when refer­
ring to an indexed address. The register name 
plus or minus any offset is stated as an index 
into MEM. Thus, MEM(X +10) means the memory lo­
cation whose address is computed by adding 10 to 
the contents of register X. In all cases, con­
stant values used as indices to MEM are hexade­
cimal constants. 

Operations using a 16-bit register result in 2 bytes 
being loaded or stored from memory whereas 8-bit 
register operations result in a single byte being 
loaded or stored. We do not explicitly distinguish 
between 1 and 2 byte memory operations in the comments 
accompanying the assembly code examples. 

The examples provided are intended to illustrate the 
assembly code instructions so no machine code 
equivalents are given in this chapter. 

3.1 DATA MOVEMENT INSTRUCTIONS 

The function of data movement instructions in the M6809 
is to transfer information, without change, from 
register to register, from register to memory, and from 
memory to register. In all cases, apart from the EXG, 
register exchange instruction, and some instances of 
the LEA, load effective address instruction, the data 
movement is implemented as a copy operation. That is, 
immediately after the data movement instruction has 
been executed, the source operand and the destination 
operand as specified in the instruction have the same 
value. The value of the source operand is not destroyed 
by the execution of the instruction. 

Data movement instructions have the following form: 

<op-code mnemonic><register specifier> <parameter> 

The instruction parameter may take different forms 
depending on the particular data movement instruction. 
These will be described along with the individual 
instructions. 

There are a total of 7 types of data movement 
instructions: 

(1) Load instructions 
Instructions which move data from memory to a 
register. 
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(2) Store instructions 
Instructions which move data from a register to 
memory. 

(3) Transfer instructions 
Instructions which move data from one register to 
another. 

(4) Exchange instructions 
Instructions which exchange the contents of one 
register with another. 

(5) Load effective address instructions 
Instructions which compute an operand address and 
load it into an index register. 

(6) Push instructions 
Instructions which push register values onto a 
stack. 

(7) Pull instructions 
Instructions which pull values stored on a stack 
into registers. 

3.1.1 Load instructions 
Load instructions in the M6809 are used to load data 
values into a register from memory or as immediate 
operands from the instruction itself. The general form 
of these instructions is: 

LD<register> <address or immediate operand> 

Registers A, B, D, S, U, X, and Y may be used in load 
instructions. If the instruction specifies a 16-bit 
register (D, U, S, X, T) , the effect of the load 
instruction is to move the addressed memory byte into 
the hi-byte of the register and to load the following 
memory byte (address + 1) into the lo-byte. That is, 2 
memory bytes or a 16-bit immediate operand is moved 
into the register. If an 8-bit register is specified, 
the addressed byte or 8-bit immediate operand is moved 
into the register. 

Four classes of addressing mode are allowed with 
load instructions. These are immediate addressing, 
direct addressing, indexed addressing and extended 
addressing. Depending on the addressing mode used and 
on the particular instruction op-code, load 
instructions are 2, 3, 4, or 5 bytes in length. 

Some examples of load instructions, in assembly 
code, are: 

LDA #10 ; A = 10 
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LDD MAXVAL ; D = MAXVAL 

LDS 10,X ; S = MEM(X + 10) 

LDB $50 ; B = MEM(DPR + 50) 

3.1.2 Store instructions 
Store instructions are the converse of load 
instructions. They are used to transfer information 
from the machine registers to memory. The general form 
of store instructions is: 

ST<register> <address> 

As with load instructions, the allowed registers are A, 
B, D, X, Y, U and S. The use of a 16-bit register name 
results in 2 bytes being moved from the register to 
memory, an 8-bit name results in a single byte being 
moved. 

Allowed addressing modes are direct addressing, 
indexed addressing, and extended addressing. For 
obvious reasons, immediate addressing is not meaningful 
in store instructions. 

Some assembly code examples of store instructions 
are: 

STA I ; MEM(I) = A 

STX ,Y ; MEM(Y) = X 

STD $30 ; MEM(DP + 30) = D 

Like load instructions, store instructions can have 
lengths between 2 and 5 bytes depending on the op-code 
and addressing mode used. 

3.1.3 Transfer instructions 
Transfer instructions move the contents of one register 
to another. Any registers may be specified as long as 
they are of like size, that is, both operands must be 
either 16-bit registers or 8-bit registers. The 
mnemonic for a transfer instruction is TFR and the only 
permitted addressing mode is register addressing. 
Transfer instructions are always 2 bytes in length. 

Examples of transfer instructions are: 

TFR A,DPR ; DPR = A 

TFR X,Y ; Y = X 

3.1.4 Exchange instructions 
The exchange instruction, whose mnemonic is EXG, is 
similar to the transfer instruction described above. 
However, rather than the value of the source register 
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being copied to the destination register, the values of 
the source and destination register are swapped. 

Again, register addressing is the only addressing 
mode which may be used with exchange instructions. For 
example: 

EXG A,DPR ; Temp = A: A = DPR: DPR = Temp 

EXG S,U ; Temp = U: U = S: S = Temp 

3.1.5 Load effective address instructions 
The purpose of the load effective address instructions 
is to set up one of the index registers (S, U, X, Y) to 
hold the absolute address of an operand in memory. 
Because address computations in the M6809 can be fairly 
complex, and hence time consuming, it is sometimes 
useful to carry out this computation once only and then 
use this computed value in subsequent instructions. 

Load effective address instructions have the form: 

LEA<index register> <address> 

The specified address must be an indexed address. LEA 
instructions are either 2, 3, or 4 bytes long depending 
on the particular type of indexed addressing which is 
used. Examples of these instructions are: 

LEAS 10,X ; S = X + 10 

LEAX D,X ; X = D + X 

It is clear from the BASIC representations of the 
instruction functions that, in many cases, the LEA 
operation involves an addition to an index register. 
This means that a subsidiary use of this operation is 
to allow addition and subtraction operations on the 
index registers without requiring that their contents 
be transferred to the accumulator register. For 
example: 

LEAS 10,S ; S = S + 10 

LEAX -20,X ; X = X - 20 

The above operations can, of course, be accomplished 
using the accumulator registers: 

TFR S,D ; D = S 
ADDD 10 ; D = D + 10 
TFR D,S ; S = D 

However, the single LEA instruction executes more 
quickly and takes up fewer memory bytes than these 
instruction sequences. 



45 

3.1.6 Push instructions 
The function of push instructions is to copy the 
contents of one or more registers onto a stack in 
memory whose top is addressed by the U or the S 
register. Push instructions have the form: 

PSH<U or S> <register list> 

The PSH can move the contents of up to 8 registers (CC, 
A, B, DPR, X, Y, S or U, PC) onto the memory stack. 

Push instructions have a postbyte indicating which 
registers have actually to be pushed onto the stack. 
Individual registers are indicated by bits in the 
postbyte as follows: 

Bit 0 CC 
Bit 1 A 
Bit 2 B 
Bit 3 DPR 
Bit 4 X 
Bit 5 Y 
Bit 6 S or U 
Bit 7 PC 

Push instructions are always 2 bytes in length. Some 
examples are: 

PSHS A,B ; Push A and B onto the S-stack 

PSHU A,B,Y,X,PC,CC,DPR ; Push all registers apart 
* from U onto the user stack 

The order in which the user specifies the registers in 
the push instruction is not necessarily the order in 
which they are pushed onto the stack. Registers are 
always pushed onto the stack in the following order: 

PC, U/S, Y, X, DPR, B, A, CC 

If all registers are pushed, CC is on top of the stack, 
A is the second top location, B is the third top 
location and so on. If only a subset of the registers 
are pushed onto the stack, the order above is 
maintained although, obviously, only the specified 
registers are actually stacked. 

For example, after executing the instruction PSHU 
A,X,B, the top of the stack is a copy of register A, 
the second top is a copy of register B and the third 
top is a copy of register X although this was not the 
order specified in the instruction. In general, this 
automatic ordering of stacked registers saves the user 
having to care about stacking order. If, however, a 
particular stacking order is required this must be 
achieved by using separate push instructions for each 
register. 
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3.1.7 Pull instructions 
Pull instructions are the converse of push 
instructions. They move information from stacks in 
memory to specified registers. The form of pull 
instructions is: 

PUL<S or U> <register list> 

Pull instructions, like push instructions, use a 
postbyte to specify which registers are to be pulled 
from the stack. Some examples of pull instructions, 
which are always 2 bytes long, are: 

PULS A,B ; Copy the top 2 locations of the 
* hardware(S) stack to A and B. 
* Adjust the stack pointer accordingly 

PULU A,B,DPR,PC,X,Y,S,CC ; Copy values of all 
* registers from the 
* user stack 

The order in which register values are pulled from the 
stack is again independent of the order in which they 
are specified in the instruction. Therefore, CC is the 
first register pulled, A the next register, B the third 
register and so on. 

3.2 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions available on the M6809 
operate on the accumulator registers and, in some 
cases, directly on memory locations. In all cases when 
an instruction operates on a register one of its 
operands is the value of that register and the result 
of the operation is placed in that register. Therefore, 
after an arithmetic operation on a register the 
previous contents of that register are destroyed. 

There are twelve arithmetic operations available to 
the M6809 programmer which we shall consider in seven 
groups: 

(1) Add instructions 

(2) Subtract instructions 

(3) Clear instructions 

(4) The multiply instruction 

(5) Negate instructions 

(6) The sign extend instruction 

(7) The decimal adjust instruction 
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As a side effect of executing most of these arithmetic 
instructions, flags in the condition code register are 
set. Particular settings are described under the 
appropriate heading below. 

3.2.1 Add instructions 
There are four kinds of add instruction provided on the 
M6809. These have the forms: 

ABX X = X + B 

ADC<A or B> Add memory to A or B with CC.C 

ADD<A, B, or D> Add memory location to accumulator 

INC<A or B> Add 1 to register or memory location 

The ABX instruction is the simplest add instruction. 
This instruction takes the contents of B to be an 
unsigned 8-bit value (0-255) and adds it to X leaving 
the result in X. The condition code flags are not 
affected. This instruction is similar in effect to the 
instruction LEAX B,X but there are important 
distinctions. Firstly, the value of B in an LEA 
instruction is taken as an 8-bit two's complement 
number so may take a value between -128 and 127. The 
value of B in an ABX instruction can range between 0 
and 255. Secondly, ABX is a 1-byte inherent 
address (this means that the instruction operands are 
always the same) so it is shorter than the 
corresponding LEA instruction. The provision of this 
instruction allows certain kinds of indexed addressing 
to be implemented in a very efficient way. 

The add with carry or ADC instruction operates on 
either accumulator A (ADCA) or accumulator B (ADCB). 
This instruction adds the contents of the register plus 
the carry bit CC.C to the specified memory location 
leaving the result in the register. The memory 
location may be addressed using direct, indexed or 
extended addressing or may be an immediate value. 

ADC instructions are used when multiple-byte 
arithmetic is implemented where it is necessary to take 
a carry from a previous arithmetic operation into 
account. The ADC instruction affects the C, N, V, Z, 
and H bits of CC. 

Examples of ADC instructions are: 

ADCA #35 ; A = A + CC.C + 35 

ADCB ,X ; B = B + CC.C + MEM(X) 

Add instructions operate on registers A, B, and D and 
their function is to add an immediate operand or a 
memory location to one of these registers. Like ADC 
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instructions, the C, N, V, Z, and H bits in the 
condition code register are affected by an ADD 
instruction. 

Examples of add instructions are: 

ADDA SVAL ; A = A + MEM(SVAL) 

ADDB #5 ; B = B + 5 

ADDD ,--Y ; Y = Y - 2 : D = D + MEM(Y) 

The INC instructions are special purpose add 
instructions which are used to add one to the single 
byte accumulators A and B or to a specified memory 
location. Although this operation can be implemented 
in other ways, the 'add 1 to something' operation is so 
common that it is worth providing it as a separate 
machine instruction. 

The instructions INCA and INCB are 1-byte 
instructions with no address field whereas the memory 
increment instruction INC may use direct, indexed or 
extended addressing. For example: 

INCA ; A = A + 1 

INCB ; B = B + 1 

INC FRED ; MEM(FRED) = MEM(FRED) + 1 

The INC operation affects the N, Z and V bits of the 
condition code register. 

3.2.2 Subtract instructions 
There are three types of subtract instruction available 
to the M6809 programmer which are the converse of ADC, 
ADD and INC. These are the instructions SBC (subtract 
with carry), SUB (subtract), and DEC (decrement by 1). 

The function of these instructions is to subtract an 
immediate operand or the value of a memory location 
from a register, leaving the result in that register. 
The operands for this operation must be in two's 
complement form. 

All the subtract operations set the overflow flag 
CC.V if the result is too small to be held in the 
specified register or memory location. They also 
affect the N and Z flags in CC and the instructions SUB 
and SUBC set the carry flag in the event of a borrow 
occurring in the last place of a subtraction. 

The SBC instructions operate on registers A and B 
and subtract CC.C as well as an immediate value or a 
memory location value from the specified register. For 
example: 

SBCA J ; A = A - MEM(J) - CC.C 
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SBCB 4,Y ; B = B - MEM(4 + Y) - CC.C 

The subtract instruction SUB operates on registers A, 
B, or D. For example: 

SUBA #4 ; A = A - 4 

SUBB $30 ; B = B - MEM( 30) 

SUBD POINTER ; D = D - MEM(POINTER) 

The decrement instruction, DEC, subtracts 1 from an 8-
bit value held in either A, B or a memory location. 
For example: 

DECA ; A = A - 1 

DECB ; B = B - 1 

DEC CVAL ; MEM(CVAL) = MEM(CVAL) - 1 

3.2.3 Clear instructions 
The function of clear instructions (CLR) is to set 
register A or B or a 1-byte memory location to zero, 
that is, to clear it of its previous value. The CLRA 
and the CLRB instructions are 1-byte instructions with 
no address field whereas the CLR instruction may use 
direct, indexed or extended addressing. 

Examples of clear instructions are: 

CLRA ; A = 0 

CLRB ; B = 0 

CLR A,X ; MEM(A + X) = 0 

3.2.4 The multiply instruction 
On most 8-bit microprocessors multiply instructions do 
not exist. Multiplication is implemented by a software 
routine which performs a sequence of repeated additions 
to multiply two numbers. The reason for this is that 
multiplication is a relatively complex operation whose 
result is always twice as long as its operands. To 
include this in an 8-bit architecture increases the 
complexity of that architecture as provision must be 
made for a 16-bit result. 

The implementation of multiplication by repeated 
addition obviously makes it a relatively slow process 
compared to addition and subtraction. Furthermore, it 
is a fairly common operation when accessing elements of 
two-dimensional arrays or matrices. As the M6809 is a 
hybrid microprocessor whose architecture includes 8-bit 
and 16-bit features, the designers of that chip have 
included a limited form of multiply instruction. The 
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multiply instruction, which has the op-code MUL, is a 
1-byte instruction which takes the contents of 
accumulators A and B as its operands and leaves the 
result of the multiplication in accumulator D. As D is 
a catenation of A and B, the original operands are 
destroyed. 

The MUL instruction takes the values in A and B to 
be unsigned 8-bit values rather than two's complement 
numbers. The reason for this is that the use of 
unsigned multiplication makes it easier for the 
programmer to write multi-byte multiplication routines 
for multiplication and that the array element 
computation referred to above generally uses only 
positive array indexes. 

An example of a multiply instruction is: 

MUL ; D = A * B 

3.2.5 Negate instructions 
Negate instructions operate on 8-bit two's complement 
values held in register A, register B or in memory. 
They are written as NEGA, NEGB, or NEG <address>. NEGA 
and NEGB negate the contents of registers A and B 
respectively whereas NEG may use direct, extended or 
indexed addressing. 

Examples of negate instructions are: 

NEGA ; A = -A 

NEGB ; B = -B 

NEG SVAL ; MEM(SVAL) = -MEM(SVAL) 

3.2.6 The sign extend instruction 
The sign extend instruction, SEX, is a 1-byte 
instruction whose function is to convert an 8-bit two's 
complement number held in accumulator B into a 16-bit 
two's complement number in accumulator D. In essence, 
it takes the sign bit of B and extends it so that it 
becomes the sign bit of D. The value of the hi-byte 
of D is set up to be the same as the sign bit of B. 
This means that if the number is positive, sign bit = 
0, accumulator A is cleared. If the number in B is 
negative, accumulator A is filled with 1s. 

3.2.7 The decimal adjust instruction 
The decimal adjust instruction is used when decimal 
arithmetic, described in section 1.1.4, is used on the 
M6809. The use of decimal arithmetic entails holding 
two 4-bit digits in an 8-bit register rather than an 
8-bit binary number. 

When an add operation is performed on such a value, 
a binary addition takes place so that the numbers held 
in each of the 4-bit register fields need not 
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necessarily be correct. For example, say the numbers 
27 and 53 are added. When represented in 4-bit decimal 
notation these have binary values 00100111 and 01010011 
respectively. When a binary addition is performed, the 
result is 01111010 which cannot be represented as 
decimal as the first digit is 7 and the second is 
hexadecimal A. Clearly, the result of the addition 
should be 80 which in binary form is 10000000. 

The decimal adjust instruction examines register P. 
and also the carry bits CC.H and CC.C. It checks to 
see if an incorrect decimal value is stored in that 
register. If so, it adjusts the decimal digits so that 
the correct value is restored. In the above example, 
it would check bits 0-3 of the number, see that they 
were an impossible decimal number and would convert 
this to the correct number by adding 6 to it. This 
results in a carry into bits 4-7 thus increasing the 
decimal value stored there to 8. The correct number is 
then represented in the register. 

The need for the half-carry bit CC.H now becomes 
clear. If bits 0-3 of the decimal numbers are such 
that an addition generates a value which cannot be 
stored in 4-bits, the half-carry bit is set. The 
decimal adjust instruction recognises this and adjusts 
the decimal digits accordingly. 

3.3 LOGIC INSTRUCTIONS 

Like the M6809's arithmetic instructions, the logic 
instructions are almost exclusively concerned with 
operations on the A and B registers and with individual 
memory bytes. The two exceptions to this art 
instructions which operate on the condition code 
register and which provide a generalised mechanism for 
setting and unsetting individual flag bits in that 
register. 

Logic operations manipulate the individual bits in 
their operands and look upon these operands as simple 
groups of bits (bitstrings) rather than as numeric 
values. For the reader who is unfamiliar with logic 
operations we describe the actual operation as well a: 
the instruction format along with each class of logic 
instruction. 

Logic instructions may be looked upon as falling 
into one of five classes: 

(1) And instructions 

(2) Or instructions 

(3) Complement (not) instructions 

(4) Shift instructions 
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(5) Rotate instructions 

Individual instructions are described under the 
appropriate heading below. 

3.3.1 And instructions 
The logical and operation takes 2 bits as its operands 
and returns a value of 1 if, and only if, both of its 
operands are 1. All possible operands and results for 
this operation are therefore: 

0 AND 0 -> 0 
1 AND 0 -> 0 
0 AND 1 -> 0 
1 AND 1 -> 1 

The M6809's and instructions operate on 8-bit data so 
therefore repeat the above operation for all 8-bits in 
the operand register. The registers A, B, and CC may 
take part in and operations. 

The instructions ANDA and ANDB perform a logical and 
on the contents of the named register and a byte in 
memory or an immediate operand. Direct, indexed or 
extended addressing may be used to reference a memory 
byte. 

The ANDCC operation, on the other hand, may only use 
immediate addressing. Its function is to and the CC 
register with the immediate byte provided leaving the 
result in CC. 

Examples of and instructions are: 

ANDA #$F0 ; Ands A with (hex) F0. 
* Note that the effect of this is 
* to clear bits 0-3 in A 
* and to leave bits 4-7 unchanged 

ANDB MASK ; Ands B with MEM(MASK) 

ANDCC #$00 ; Ands CC with (hex) 00 
* This clears CC 

The reader will have gathered from these examples that 
one of the most important functions of the and 
operations is to clear specific bits in a register 
whilst leaving the other bits unchanged. Anding a 0 
with a 1 bit always clears it whereas anding a 1 with 
either a 1 or a 0 always leaves that value unchanged. 

3.3.2 Or instructions 
There are two types of or instructions provided on the 
M6809. These are so-called inclusive or and exclusive 
or which have mnemonics OR and EOR respectively. 

These operations can be defined by their effect on 
bit values: 
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0 OR 0 -> 0 0 EOR 0 -> 0 
1 OR 0 -> 1 1 EOR 0 -> 1 
0 OR 1 -> 1 0 EOR 1 -> 1 
1 OR 1 -> 1 1 EOR 1 -> 0 

Like the and instructions, or instructions are provided 
which operate on registers A, B, and CC. However, 
there is no EORCC instruction - only EORA and EORB are 
available to the programmer. 

Examples of OR and EOR instructions are: 

ORA #$0F ; Or (hex) OF with register A 
* Note the effect of this is to 
* set bits 0-3 of A whilst leaving 
* bits 4-7 unchanged 

EORB ,X ; Exclusive or B with MEM(X) 

ORCC #$03 ; Or (hex) 03 with CC thus setting 
* bits 0 and 1 in that register 

Just as and instructions can be used to clear specific 
bits in a register, or instructions may be used to set 
specific bits. Oring with a 1 bit always sets the 
corresponding register bit whereas oring with a 0 
always leaves that bit unchanged. 

3.3.3 Complement instructions 
Complement instructions simply switch the bits in a 
register or memory byte. That is, all 1 bits are set to 
0 and all 0 bits are set to 1. For example, if B holds 
the bitstring 10010011, executing a COMB instruction 
results in the bitstring 01101100 being stored in B. 

Single byte instructions are available to complement 
registers A and B as is a memory complement instruction 
which may use direct, indexed or extended addressing. 
An alternative name which is sometimes used for the 
complement operation is the 'not' operation. 

Examples of complement instructions are: 

COMA ; Complement register A 

COM B,X ; Complement MEM(B + X) 

The complement operation is not the same as the NEG 
arithmetic operation. The NEG operation forms the two's 
complement of a number whereas the COM operation forms 
the so-called one's complement value. 

3.3.4 Shift instructions 
The purpose of shift instructions is to move all the 
bits in a register along one place to the left or to 
the right with the leftmost or rightmost bit 'falling 
off the end' and being discarded. For example, if a 
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register holds the binary value 10110001 and is shifted 
left, the resultant value is 01100010. If a right 
shift is executed, the resultant value is 01011000. 
Notice that 0s are filled in on the left when a right 
shift is executed and on the right when a left shift 
takes place. The M6809's shift instructions fall into 
two classes: 

(1) A r i t h m e t i c s h i f t i n s t r u c t i o n s 
Arithmetic shift instructions consider bit 7 of 
the register being shifted to be the sign bit. 
This bit does not take part in arithmetic shift 
right instructions and its value is preserved. 
The bit is shifted during arithmetic shift 
left (ASL) instructions. For example, if a re­
gister value is 10010011 and an ASL instruction 
using that register is executed, the resultant 
value is 00100110. However, with ASR bits 0-6 are 
shifted with the sign bit propagated into the 
lower bits. The resulting value is 11001001. 

(2) Logical shift instructions 
Logical shift instructions do not recognise the 
sign bit and their operands are shifted to the 
left or to the right as described in the intro­
duction to this section. Logical shifts have 
mnemonics LSL (logical shift left) and 
LSR (logical shift right). Notice that the LSL 
and the ASL instructions are equivalent. 

The arithmetic and logical shift instructions operate 
on the A and B registers and on memory bytes accessed 
using direct, indexed or extended addressing. Shift 
instructions always affect the carry bit CC.C whose 
value becomes that of the bit which is shifted out of 
the register. 

Examples of shift instructions are: 

ASLA ; Shift A left by 1 bit with 
* CC.C set to the value of bit 7 
* of A before the shift 

ASRB ; Shift B right by 1 bit with 
* CC.C set to the value of bit 0 
* of B before the shift 

LSL SVAL ; MEM(SVAL) is shifted left by 
* 1 bit with CC.C set accordingly 

LSR -16,U ; MEM(U-16) is shifted right by 1 bit 
* with CC.C set accordingly 

3.3.5 Rotate instructions 
Rotate instructions are similar to logical shift 
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instructions. The only difference is that the value of 
the carry bit CC.C rather than a 0 is moved to the 
leftmost or rightmost place of the register, depending 
on whether a rotate right or rotate left instruction is 
executed. 

The mnemonics for rotate right and rotate left 
instructions are ROR and ROL respectively and they 
operate on the A or B registers or on a memory byte. As 
usual, direct, indexed or extended addressing may be 
used to refer to this byte in memory. 

Examples of rotate instructions are: 

RORA ; A is shifted right by 1 bit with 
* bit 7 becoming CC.C and CC.C taking 
* the value of bit 0 before the shift 

ROL SVAL ; MEM(SVAL) is shifted left by 1 bit 
* with bit 0 becoming CC.C and CC.C set 
* to the original value of bit 7. 

3.4 TEST INSTRUCTIONS 

The M6809's test instructions allow the programmer to 
determine if certain conditions are true or false. The 
execution of a test instruction always causes one or 
more bits in the CC register to be set or unset 
depending on the result of the test. Thus CC bit 
settings are the means by which test results are 
'remembered' for use by following instructions. 

There are three kinds of test instructions: 

(1) Bit test instructions 

(2) Byte test instructions 

(3) Compare instructions 

Bit test instructions only operate on registers A and B 
and byte test instructions on A, B and memory bytes. 
Compare instructions, however, are available for all 
index and accumulator registers. 

3.4.1 Bit test instructions 
The bit test instructions BITA and BITB are used to 
test if particular bits (0-7) in register A or B are 1 
or 0. The operand of the bit test instruction is a 
single byte called a mask whose value determines which 
bits in the specified register are to be tested. 

In order to test bit n in the register, the mask is 
set up so that only its nth bit is 1 with all other 
mask bits set to 0. Therefore, to test bit 4, the mask 
value should be 10 (hex) and to test bit 6, it should 
be 40 (hex). 

If the bits being tested are set, the effect of the 
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bit test instruction is to unset the zero flag (Z-flag) 
in the CC register. Recall that this flag is always 
set when the result of an operation is zero and unset 
when the result is non-zero. Bit test is implemented 
as an and operation but without the anded value being 
stored in the specified register. Therefore, if a 
tested bit is 1, CC.Z is 0 and if a tested bit is 0, 
CC.Z is 1. 

Examples of bit test instructions are: 

BITA #$80 ; Tests bit 7 of A 
* CC.Z = not A.7 

BITB MASK ; Tests the bits of register B 
* according to MEM(MASK) 

3.4.2 Byte test instructions 
Byte test instructions are used to test if a byte in 
memory, register A or register B is positive, negative 
or zero. The mnemonic for these instructions is TST 
with, as usual, A or B appended to it if registers are 
tested. If a memory byte is being tested it may be 
addressed using direct, indexed or extended addressing. 

Byte test instructions are implemented by 
subtracting 0 from the contents of the byte being 
tested. The result of this subtraction causes the 
negative flag and the zero flag in the CC register to 
be set or unset. We have already discussed how the Z-
flag is set if the result of the previous operation is 
zero so, if the tested byte is zero, CC.Z is set and 
CC.N is unset. 

If the byte tested is positive, both CC.Z and CC.N 
are unset, whereas if it is negative CC.Z is 0 and CC.N 
is 1. In all cases the byte test instruction causes 
the overflow bit CC.V to be unset. 

Examples of byte test instructions are: 

TSTA ; Test register A 

TST 16,X ; Test MEM(16 + X) 

3.4.3 Compare instructions 
Compare instructions allow registers A, B, D, X, Y, S, 
and U to be compared with one or two bytes in memory or 
with an immediate operand. Allowed addressing modes 
are direct, indexed and extended addressing. The 
mnemonic for compare instructions is CMP followed by 
the name of the particular register used in the 
comparison. 

Like byte test instructions, compare instructions 
are implemented as a subtraction with no permanent 
effect on the instruction operands. The addressed 8-
bit or 16-bit quantity is subtracted from the register 
contents and the carry, overflow, zero and negative 
bits in the condition code are set accordingly. 



57 

If the value in memory is less than the register 
value, the result of the comparison is positive so CC.N 
is unset. If it is greater than the negative value, 
the result is negative so CC.N is set, and if the 
values are equal, the result of the subtraction is zero 
so CC.Z is set. 

Examples of compare instructions are: 

CMPX [MAXADD] ; Compare X with MEM(MEM(MAXADD)) 

CMPB #10 ; Compare B with (decimal) 10 

CMPD 16,U ; Compare D with MEM(16 + U) 

Compare instructions are mostly used immediately before 
branch instructions to implement loops, conditions, 
etc. The programmer need not explicitly be aware of 
which bits in CC are set or unset by the compare 
instruction when they are used in this way. 

3.5 BRANCH INSTRUCTIONS 

The M6809's branch instructions are provided to give 
the programmer control over the flow of execution of 
his program. They allow single bits or combinations of 
bits in the condition code register to be tested and, 
on the basis of these tests, add or subtract some value 
from the PC register. This PC modification results in 
a break in the normal sequential execution of machine 
instructions and transfers control to some other 
instruction. 

Branch instructions may be considered under four 
headings: 

(1) Unconditional branch instructions 
These always cause a transfer of control ir­
respective of the bit settings in the CC regis­
ter. 

(2) Simple conditional branch instructions 
These test a single bit in the CC register with a 
control transfer dependent on its value. 

(3) Signed conditional branch instructions 
These are used if, in the previous test, signed 
register contents were compared with signed con­
tents of memory. They test one or more bits in 
CC with control transfers dependent on their 
values. 

(4) Unsigned conditional branch instructions 
These are similar to signed conditional branch 
instructions but are used when unsigned values 
were compared in a previous operation. 
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All branch instructions use PC relative addressing with 
the value to be added to PC held as an 8-bit or 16-bit 
instruction operand. Because the operand may be 1 or 
two bytes, there are 2 forms of every branch 
instruction, a short form and a long form. Short 
branch instructions have the form: 

B<condition> <1 byte 2's complement displacement> 

Long branch instructions have the form: 

LB<condition> <two byte 2's complement displacement> 

In the description and examples below, it is convenient 
for us to show only the short form of the branch 
instructions. However, the reader should bear in mind 
that long branch forms are also allowed. The actual 
machine code value for the long branch form of a branch 
instruction is usually made up by prefixing the 
corresponding short branch op-code with 
10 (hexadecimal). Long branch instructions are used 
when the displacement in the branch instruction is less 
than -128 or greater than 127. 

3.5.1 Unconditional branch instructions 
There are three distinct unconditional branch 
instructions available to the M6809 programmer. These 
are: 

BRA Branch always 
BRN Branch never 
BSR Branch to subroutine 

The BRA instruction is equivalent to a BASIC GOTO 
statement and the BSR instruction to a BASIC GOSUB 
statement. These instructions always add their 
displacement to PC irrespective of the settings of CC 
flags. In addition, the BSR instruction, before 
modifying PC, stacks that register on the hardware 
stack referenced by the S register. This means that, 
on return from the subroutine, execution can be resumed 
at the instruction which follows the BSR instruction. 

The BRN instruction is a so-called no-op 
instruction. In short it does nothing at all except 
take up 2 or 4 bytes of space. When this instruction 
is executed, control immediately moves on to the 
following instruction. This may, therefore, appear to 
be a useless instruction. However, it has its uses 
when the programmer wishes to cheat a little and hide a 
1 or 2 byte instruction in the operand field of the BRN 
instruction. After the first execution of BRN when 
this instruction is ignored, it is possible to branch 
back to the hidden instruction and execute it. This, 
however, is poor programming practice and is not a 
recommended technique. 



59 

3.5.2 Simple conditional branch instructions 
Simple conditional branch instructions examine a single 
bit in the M6809's condition code register. 
Instructions exist which branch on the setting of the 
carry flag, the overflow flag, the negative flag, and 
the zero flag. There are two instructions which test 
each flag. One of these instructions branches if the 
flag is set, the other branches if the flag is unset. 

The table below lists the simple conditional branch 
instructions and shows their association with condition 
code flags. 

As with all other branch instructions, these may take 
an 8-bit or 16-bit signed two's complement offset thus 
allowing forward or backward branching. If a 16-bit 
offset is used, the mnemonics above must be prefixed 
with an L to indicate long branching. 

3.5.3 Signed conditional branch instructions 
Signed conditional branch instructions are used when a 
preceding operation has compared the values of signed, 
numeric operands. These branch instructions examine 
combinations of condition code flags to determine if 
the specified condition is true or false and if 
branching should occur. 

The table below shows the four distinct signed 
conditional branch instructions available to the M6809 
programmer. In addition to these, the simple 
conditional branch instructions BEQ and BNE may also be 
used as signed conditional branches, where the branch 
takes place if the operands in the preceding comparison 
were equal or not equal. 

Flag 
C 

V 

Z 

N 

Mnemonic 
ECS 
BCC 

BVS 
BVC 

BNE 

BEQ 

BMI 
BPL 

Function 
Branch if carry bit is set 
Branch if carry bit is unset (clear) 

Branch if overflow bit is set 
Branch if overflow bit is clear 

Branch if zero bit is unset 
that is, when comparison operands 
are not equal 
Branch is zero bit is set 
that is, when comparison operands 
are equal 

Branch is negative bit is set 
Branch if negative bit is unset 

Flag combination 
NOT(Z OR (N XOR V)) 

NOT(N XOR V) 

Mnemonic 
BGT 

BGE 

Function 
Branch if greater than 

Branch if greater than 
or equal 



Notice that the pairs of conditions above are 
complementary with the greater than conditions the 
inverse of the less than conditions. BLE is the 
complement of BGT and BGE is the complement of BLT. We 
therefore only explain the flag combinations for a 
single pair of instructions BLE and BLT. 

The BLE instruction branches if, in the preceding 
comparison, the register operand was less than or equal 
to the memory operand. If register A was tested 
against MEM(VAL) say, we might write this as A <= VAL. 
If the operands are equal, the Z-flag in CC is set. 
This flag is examined by BLE and branching occurs if it 
is set. 

If A and MEM(VAL) have the same sign, the 
subtraction operation entailed in the comparison can 
never result in overflow so CC.V is always cleared. If 
A is indeed less than MEM(VAL), the subtraction will 
result in a negative value so CC.N will be set. 
Therefore, if CC.N is set and CC.V unset, this 
indicates that A is less than MEM(VAL) and branching 
will occur. If CC.V is unset and CC.N is unset, A is 
not less than MEM(VAL). 

In the case where A and MEM(VAL) have different 
signs, the comparison may result in an overflow 
occurring. Thus the sign bit will have an incorrect 
value. If CC.V is set, indicating overflow, and CC.N is 
unset, indicating a non-negative value, this actually 
means that the result is negative. On the other hand, 
if both CC.N and CC.V are set, the result is positive. 

Because of the meanings of these bit combinations, 
the exclusive or operation performed on CC.N and CC.V 
always gives the correct sign bit for the number. 
Therefore, if this operation returns 1, the result of 
the comparison is negative and branching should take 
place. 

The BLT instruction can be considered as a less 
general form of the BLE instruction which only branches 
when the register operand is less than the memory 
operand. The above argument holds for this instruction 
also. The BGT and the BGE instructions are simply the 
complements of these so a not operation performed on 
the corresponding 'less than' condition bits allows 
these instructions to determine if branching should 
take place. 

3.5.4 Unsigned conditional branch instructions 
Unsigned conditional branch instructions are used when 
the preceding operation compares the values of unsigned 
operands. Again, these instructions test condition 

Z OR (N XOR V) 

(N XOR V) 

BLE 

BLT 

Branch if less than 

Branch if less than 
or equal 
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code register flag combinations to determine if 
branching should take place. 

The table below shows the four unsigned conditional 
branch instructions and the flags tested in the CC 
register. Again, the BEQ and BNE instructions may be 
used under this category. 

Again the instruction pairs BLO/BHS and BLS/BHI are 
complementary so we shall only discuss the operations 
BLO and BLS. As these operations assume that the 
previous comparison tested unsigned operands, the 
negative flag CC.N is not tested by these instructions. 
As always, if the result of the comparison is zero, 
CC.Z is set so the BLS instruction branches if this 
flag is 1. 

As the comparison operands are unsigned, the 
subtraction entailed in the comparison is essentially a 
subtraction of positive values. If the second operand 
is greater than the first, the subtraction will result 
in a borrow. Thus, the carry bit in CC will be set. 
If the second operand (the memory operand) is smaller 
than the first, no borrow will result so the carry bit 
will be unset. Therefore, the BLO and BLS instructions 
examine the carry bit and branch if it is set. 

So far, we have not provided any explicit examples 
of branch instructions as, unlike other instructions 
considered so far, examples of these instructions are 
meaningless in isolation. To illustrate some of the 
branch instructions in use we show below the assembly 
code equivalent to a number of BASIC statements 
involving loops and conditional operations. 

100 IF V1 > V2 THEN GOTO 500 
200 IF V1 = V2 THEN GOTO 700 
300 V1 = V1 + 2 
400 GOTO 200 
500 M = V1 
600 GOTO 800 
650 REM ASSUME A SUBROUTINE EXISTS AT 2000 
700 GOSUB 2000 
800 ... 

Assuming V1, V2 and M are represented as 16-bit signed 

Flag combination 
C 

C OR Z 

NOT(C) 

NOT(C OR Z) 

Mnemonic 
BLO 

BLS 

BHS 

BHI 

Function 
Branch if lower 

Branch if lower or 
the same 

Branch if higher or 
the same 

Branch if higher 
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quantities and that the subroutine at 2000 has the 
symbolic name V1EQ, an assembly code sequence which 
would carry out the same function is: 

LDD V1 ; D = V1 
CMPLAB CMPD V2 ; Compare this with V2 

BGT GTLAB ; If greater than branch 
BEQ EQLAB ; If equal branch. 

* Notice there is no need for 
* another load or comparison 

ADDD #2 ; Add 2 to D 
STD V1 ; and put result back into V1 
BRA CMPLAB ; Branch back to comparison 

GTLAB STD M ; V1 > V2 so M = V1 
BRA NXTLAB ; continue 

EQLAB BSR V1EQ ; Values equal, call routine 
NXTLAB 

Notice how the assembly code version of the sequence is 
only slightly longer than the BASIC. Whilst, in 
general, BASIC statements expand into multiple assembly 
code instructions it is often possible to eliminate 
much of the redundancy inherent in high level language 
programming and hence produce compact code. 

3.6 INTERRUPT HANDLING INSTRUCTIONS 

An interrupt is a means by which a program, executing 
on a processor, can be temporarily suspended whilst 
some other program executes. They are of vital 
importance in I/O programming where interrupts are used 
by peripheral devices to inform the processor that data 
are available. The processor must stop what it is 
doing, collect the data from the peripheral then 
restart its original activity. 

The interrupt handling instructions available to the 
M6809 programmer are described in full in Chapter 8 
which covers I/O programming. Here, we simply list the 
interrupt handling instructions which are available and 
summarise their functions. 

(1) The wait instruction 
This instruction, mnemonic CWAI, takes a single 
byte operand which is anded with the contents of 
CC when the instruction is executed. The E flag 
in the condition code register is then set, indi-
cating that all registers should be stacked on 
the hardware stack. The instruction then waits 
(does nothing) until a hardware interrupt occurs. 
Interrupt processing, as detailed in Chapter 8, 
then commences. 

(2) The return from interrupt instruction 
The return from interrupt instruction, RTI, is 
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executed after interrupt processing is complete. 
It unstacks the register values pertaining when 
the interrupt occurred thus returning control to 
the interrupted process. 

(3) The software interrupt instruction 
This instruction, which has mnemonic SWI, causes 
a so-called software interrupt. A software in­
terrupt causes the processor to jump to an asso­
ciated interrupt service routine which may, for 
example, transfer control to some other process. 
Thus the execution of programs in different parts 
of the M6809's memory may be coordinated and syn­
chronised . 

(4) The synchronise instruction 
This instruction, SYNC, is used to synchronise an 
executing program with some external hardware 
event. 

Interrupt handling instructions are special purpose 
instructions and are unnecessary for most applications 
programmed in assembly code. 

3.7 MISCELLANEOUS INSTRUCTIONS 

In this section, we describe the remaining M6809 
machine instructions which don't fit neatly into any of 
the above classifications. There are only four 
instructions in this category. These are: 

(1) The jump instruction 

(2) The jump to subroutine instruction 

(3) The return from subroutine instruction 

(4) The no operation instruction 

We shall start with the 'no operation' instruction 
which has mnemonic NOP. Its function is very easy to 
describe - it does nothing. A NOP instruction is 1 
byte long and all it does is take up memory space. This 
can be useful if it is necessary to force other 
instructions to occupy particular memory locations. 

3.7.1 Jump instructions 
The jump instructions available to the M6809 programmer 
are similar to the branch instructions discussed 
earlier in this chapter. The function of these 
instructions is to evaluate their operand and load its 
value into the program counter register. Therefore, if 
addresses of other instructions are saved as data, you 
can transfer control to these instructions using a jump 
instruction. 
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The addressing modes allowed with jump instructions 
are direct, indexed and extended addressing. There are 
two jump instructions JMP, which is an unconditional 
jump, and JSR, which is a jump to subroutine 
instruction. The only difference is that JSR stacks the 
program counter PC on the hardware stack before 
assigning its operand to the PC register. 

Examples of jump instructions are: 

JMP B,U ; PC = MEM(B + U) 

JSR ,U ; S = S - 2: MEM(S) = PC: PC = MEM(U) 

3.7.2 The return instruction 
The return from subroutine instruction, whose mnemonic 
is RTS, is executed as the last instruction in a 
subroutine. It unstacks the top two bytes from the 
hardware stack and assigns them to PC. This 
effectively transfers control to the instruction 
following the BSR or JSR instruction which initiated 
the subroutine. 



Chapter 4 

Introducing assembly 
language 
Assembly language programming is a form of computer 
programming where the programmer writes his program as 
a sequence of absolute directives to the processor. 
That is, he states exactly which machine instructions 
are to be used in the exemption of his program. 

This type of programming is sometimes called low-
level programming because it is a notation which is 
very close indeed to machine language. By contrast, 
programming in a language such as BASIC is called 
high-level language programming. The programmer writes 
his program at a much higher level where the details of 
the machine architecture are irrelevant. 

High-level programming is much easier than low-level 
programming because machine architectures are 
inherently complex. The low-level programmer must 
master all the details of this complexity if he is to 
avoid making programming errors. The high-level 
programmer, on the other hand, has many fewer details 
to remember and can concentrate on getting the logic of 
his program correct - a difficult enough task in 
itself. 

The majority of computer applications can be 
programmed perfectly adequately in a high-level 
language and there is no point in programming in 
assembly language when BASIC will do. However, in 
personal computers, like the Dragon, there are some 
tasks which are easier to program in assembly language 
rather than BASIC because they require access to 
hardware features of the machine. Although this is 
possible from BASIC, it is clumsy and inconvenient as 
it requires the use of many POKE and PEEK instructions. 

There are also some types of program which, if 
programmed in BASIC, are too slow. This slowness 
results from the way in which BASIC is implemented. 
Every BASIC statement must be translated to machine 
code just before it is executed and this takes a 
significant amount of time. As this translation is 
absolutely essential, the only way to speed these 
programs up is to program them or, at least those 
time-critical parts of them, in assembly code. 

As we have already suggested, the real difference 
between programming in assembly language and 
programming in BASIC is one of detail. In BASIC, 
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decisions about where the program and its data are to 
be located in memory, how real numbers are to be 
provided, how character strings are manipulated, etc. 
are all made for the programmer by the BASIC system. 
As well as this, BASIC programs are expressed in such a 
way that they are readily understood by people whereas 
the notation used for assembly code bears little 
relation to the logical processes involved in solving 
the problem at hand. 

However, in spite of these difficulties, there are 
three fundamental advantages in programming in assembly 
language rather than BASIC: 

(1) The programmer has complete control over the 
machine. If he wishes to use his own particular 
way of manipulating characters or to access 
hardware features in some non-standard way, this 
is possible in assembly language but impossible 
in BASIC. 

(2) Assembly language programs are very much faster 
than equivalent BASIC programs. Because the 
translation phase from BASIC to machine code is 
avoided, assembly language programs typically ex­
ecute at least 100 times faster and sometimes as 
much as 1000 times faster than corresponding 
BASIC programs. This means that they are suit­
able for programs, like some arcade-type games, 
which must react very quickly to input from the 
user. 

(3) Assembly language programs are more compact, that 
is, occupy less memory, than their BASIC 
equivalents. This is particularly important when 
large programs are written which may require al­
most all of the memory available on the machine. 

Of course, there are also disadvantages associated with 
programming in assembly language apart from the obvious 
one that the programmer must remember many low-level 
details of the machine. These disadvantages are: 

(1) Because the programmer has complete control over 
the machine, it is more difficult to detect mis­
takes in assembly code programs. As long as a 
valid instruction is written, something will hap­
pen even although the instruction does not do 
what the programmer really wants. Whereas the 
BASIC system has many built-in checks which 
detect errors like dividing by zero, no built-in 
error detection is available to the assembly 
language programmer. 

(2) Because of the low-level nature of assembly 
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language programs and because the programmer must 
explicitly include his own error checking facili­
ties, assembly language programs are usually a 
good deal longer than their BASIC equivalents. 
This means that they take longer to write, are 
more difficult to understand, and are likely to 
contain more mistakes than high-level language 
programs. 

Because of the complexity of assembly language 
programming, it is best to adopt a multi-stage approach 
when developing a program which is ultimately written 
in assembly code. 

The first stage is to work out the solution to your 
problem in very general terms and to write down this 
solution in some stylised way. This is a very high-
level expression of what your program ought to do. For 
example, say you are developing a game where the player 
must shoot down alien spacecraft. Part of the general 
high-level expression of this might be: 

if firing button pressed then 
launch missile 

if alien detects missile launch then 
drop anti-missile bomb 

if dodge key pressed then 
move missile to avoid bomb 

else 
missile destroyed 

In fact, this approach is always how we work out the 
logic of programs although, sometimes, we do it in our 
heads rather than explicitly on paper. Writing down 
the solution is much better because when we hold 
detailed information mentally it is very easy to forget 
bits of the problem solution or to make mistakes when 
mentally translating to a programming language. 

The second stage, which is particularly important 
for inexperienced assembly language programmers is to 
translate the general, abstract problem solution into a 
high-level programming language like BASIC. Here, you 
must decide how logical operations such as 'firing 
button pressed' are actually to be implemented. For 
example, in the above program, missile dodge keys might 
be '4' to move left and '6' to move right. We might 
code that part of the solution as: 

KEY$ = INKEY$ 
IF KEY$ = "4" THEN MISX = MISX - 1 
IF KEY$ = "6" THEN MISX = MISX + 1 

where MISX represents the x-coordinate of the missile. 
An advantage of this intermediate stage between 

problem solution and assembly code program is that the 



68 

BASIC program can sometimes act as a prototype for the 
final program. This lets you try out ideas and debug 
the logic of the solution before becoming involved with 
the details of assembly language. 

The third stage in the development of an assembly 
language program is to take the high-level language 
program and to translate it, by hand, to assembly code. 
This is a straightforward process and the assembly 
language equivalents for BASIC statements are described 
later in this chapter. 

Sometimes it isn't necessary to translate the 
complete program into assembly code. Typically, most 
programs have relatively small sections, such as a 
display subroutine, where they spend most of their 
time. It is possible to code these time-consuming 
subroutines in assembly language and to link them into 
a BASIC program. This often gives the speed-up effect 
desired by the programmer and the chore of translating 
the whole program into assembly code can be avoided. 
We explain how assembly code subroutines can be linked 
with BASIC programs in Chapter 6. 

In any direct translation of a BASIC program to 
assembly language, there is bound to be redundancy. 
For example, say we have two BASIC statements: 

M = M + 1 
V = V + M 

A direct translation of these into assembly code, 
assuming that both M and V can be held as 8-bit 
integers, is: 

LDA M ; A = MEM(M) 
ADDA 1 ; A = A + 1 
STA M ; MEM(M) = A 
LDA V ; A = MEM(V) 
ADDA M ; A = A + MEM(M) 
STA V ; MEM(V) = A 

However, this can be optimised by using the INC 
instruction to add 1 to A. An optimised version of 
this instruction sequence is therefore: 

INC M ; MEM(M) = MEM(M) + 1 
LDA V ; A = MEM(V) 
ADDA M ; A = A + MEM(M) 
STA V ; MEM(V) = A 

The final stage in developing an assembly code program, 
therefore, is to take the BASIC equivalent program and 
to eliminate redundant steps in order to optimise the 
program. Some obvious elimination of redundancy can be 
done during stage three but program rearrangement, the 
use of different addressing modes, etc. should be left 
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until this final stage. In the examples in the 
following chapters we show how optimisation can make a 
considerable difference to the size of a program. 

This chapter and the following two chapters are 
devoted to assembly language programming. In the 
remainder of this chapter, we describe a class of 
program called assemblers. An assembler translates 
instruction mnemonics, symbolic names, etc. used by the 
programmer to machine code. It is a vital tool for the 
serious assembly language programmer. 

The following chapter, Chapter 5, shows how commonly 
used programming constructs such as assignments, loops 
and conditional statements may be programmed in 
assembly language. The approach which we use here is to 
take BASIC statements implementing these constructs and 
show how assembly language equivalents to these can be 
built up. We also show how these 'BASIC-equivalent' 
programs can usually be optimised to produce a program 
which has improved space and time efficiency. 

Chapter 6 looks at more advanced aspects of assembly 
language programming. In that chapter, we describe a 
general-purpose technique for implementing subroutines 
and we show how character strings may be represented 
and manipulated. We also describe how to link assembly 
language subroutines with BASIC programs and how to 
write assembly code which is position independent. 

It is beyond the scope of this book to discuss 
assembly language programming in great detail. This 
requires a book in itself and, to supplement the 
material here, the reader may find it useful to refer 
to some of the textbooks on M6809 assembly language 
programming which are listed in the reading list. 

4.1 THE ASSEMBLER PROGRAM 

We have already introduced, in earlier chapters, the 
idea of an assembler as a program which translates 
assembly language statements to machine code. This 
translation is not a difficult process as it simply 
requires the program to look up tables of names and 
associated hexadecimal values. However, for humans this 
is a slow, tiresome, error-prone task. In fact, it is 
the kind of job that computers excel at and we 
recommend that you should try to avoid the hand 
translation of assembly code. 

For each machine, there are usually several 
different assemblers available from different 
suppliers. Some of these might have more sophisticated 
features than others but all will provide at least the 
following facilities. 

(1) The translation of mnemonic instructions to their 
equivalent hexadecimal op-codes. 
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(2) The ability to associate labels with assembly 
language statements. Reference to these labels 
within the program will result in the address of 
the labelled statement being substituted for the 
label. 

(3) The association of names with specific memory lo­
cations. When these variable names are used by 
the programmer, the assembler substitutes the ac­
tual memory address of the variable. 

(4) The translation of decimal numbers to their hexa­
decimal equivalent. 

(5) The translation of symbolised address references 
such as [ ,X ] for indirect indexed addressing to 
the appropriate postbyte, offset, etc. 

(6) Limited error checking indicating if an invalid 
mnemonic has been used, if a label referenced in 
an instruction is not declared, if a short branch 
is used where a long branch is required, etc. 

The particular assembler whose facilities we shall 
describe in this chapter is the DREAM assembler, 
available from the manufacturers of the Dragon. This is 
a typical assembler which uses fairly standard Motorola 
M6809 notation, as set out in Appendix 1, for assembly 
language instructions. There may be slight differences 
in detail if you use a different assembler but, in 
general, the description of facilities below applies to 
all assemblers which are available for the Dragon. 

The single exception to the standard notation is 
when indirect addressing is used. As the symbols '[' 
and ' ] ' are not Dragon keyboard characters, the DREAM 
assembler uses round brackets ' ( ' and ' ) ' to indicate 
indirect addressing. We shall follow this convention 
from now on but the reader who is using some other 
assembler should read (<address>) as [<address>]. 

As well as being an assembler, DREAM is also an 
editor. It provides facilities for inputting, 
modifying, duplicating and saving text on a cassette. 
This text need not be assembly code but may be anything 
at all. However, as the editing and assembling 
facilities are combined, the implementors of DREAM 
clearly see the creation and editing of assembly 
language instructions as its major task. As assembly 
language instructions do not have explicit line 
numbers, it is not possible to use the BASIC editor to 
create and edit assembly language programs. 

The standard format for an assembler source line as 
input to DREAM or any other assembler based on the 
standard Motorola notation is: 



71 

<label> <mnemonic> <operand> <comments> 

The different fields in the source line must be 
separated by one or more spaces. The <label> and 
<comments> fields are optional, the <mnemonic> field 
must be present as must the <operand> field except for 
those instructions which use inherent addressing and do 
not require explicit operands. 

4.1.1 The label field 
The label field, if present, must start in the first 
column of the source line. Anything that starts in 
column 1 is therefore taken, by the assembler, to be a 
label. If you make a mistake and put a mnemonic in 
column 1 or a label starting in some other column the 
assembler will get very confused indeed. 

Labels must start with a letter and may only contain 
alphanumeric characters, that is, letters and numbers. 
Most assemblers impose a limit on the length of a label 
- the DREAM assembler, for example, insists that labels 
be no more than 6 characters long. 

The table below shows examples of valid and invalid 
statement labels. 

Valid Labels Invalid Labels 

A372 372A (label must start with a letter) 
NEXTCH NEXTCHAR (label too long) 
OUT IN-OUT (label may not contain '-') 

There is a single exception to the rule in the DREAM 
assembler that labels may contain only alphanumeric 
characters. One label, and one label only, in the 
program may have a '@' as its first character. For 
example, @START or ©BEGIN are valid labels although 
both may not be used in the same program. The label 
whose first character is '@' is one way of indicating 
to the assembler where to start program execution when 
the assembled machine code program is run on the 
Dragon. 

Although the labels A, B, X, Y, U, S, CC, PC, and DP 
are not invalid, you should avoid using them because of 
potential confusion with the M6809 register names. 
Similarly, you should not use labels which are 
identical to assembly language mnemonics. 

4.1.2 The mnemonic field 
The mnemonic field of an assembler input line must 
contain one of the instruction mnemonics that we 
covered in the previous chapter. It must be separated 
from the label field by at least one space. If no 
label is present, the mnemonic field must still be 
preceded by one or more spaces otherwise it will be 
taken as a label. 
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4.1.3 The operand field 
The operand field in an assembly language instruction 
must be present except for those instructions like 
INCA, ABX, MUL, etc. which have no operands. It must be 
separated from the mnemonic field by at least one 
space. The operand field specifies the operand address 
and the following conventions are used when using the 
DREAM assembler to indicate which addressing mode is 
being used. 

Register addressing 
The names of the source and destination registers are 
separated by a comma. For example: 

TFR X,Y 
EXG A,DP 

Immediate addressing 
The immediate value is preceded by a '#' symbol. By 
default, immediate values are decimal but hexadecimal 
values may be input by preceding the value with a '$' 
symbol and character values by preceding them with a 
quote "'" symbol. It is also possible to associate 
symbolic names with constants and these may also be 
input as immediate values. For example: 

LDA #10 
LDB #$10 
LDA #' + 
LDA #MAXINT 
LDA #LAB1 

If the immediate operand in an instruction is a program 
label, the value substituted for the symbolic label is 
the address of the labelled statement. 

Direct and extended addressing 
In general, the assembler will decide for the 
programmer whether it is best to use direct or extended 
operand addressing. DREAM works out if the addressed 
operand is within a page of the current DP register 
setting and, if so, it generates a direct address. 
Otherwise, an extended address is generated. 

A symbolic name on its own indicates either direct 
or extended addressing as decided by the assembler. 
The programmer may force extended addressing by 
preceding the name with a '>' character or may force 
direct addressing by preceding it with a '<' character. 
For example: 

LDX VNAME Direct or extended 
LDX >TNM Force extended addressing 
LDX <COUNT Force direct addressing 
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Indexed addressing 
The general form of an indexed address is: 

<offset>,<index register> 

The offset may be a register name, a symbolic name, a 
constant value or may be left out altogether. The 
register name must be X, Y, U or S and, if no offset is 
present, auto increment or decrement may be specified. 

The following examples all show generalised indexed 
addressing. 

LDA BASE,PCR PC relative 
STX OFFST,Y Symbolic constant offset 
STD -16,X Constant offset 
LDA ,X Zero offset 
LDB A,U Register offset 

Auto increment and decrement may only be used with zero 
offset addressing. They are indicated by prefixing the 
index register name with '-' or '--' or by suffixing it 
with '+' or '++'. For example: 

STX ,Y++ Auto increment by 2 
STA ,S+ Auto increment by 1 
LDB ,-Y Auto decrement by 1 
LDD ,--S Auto decrement by 2 

In all cases, the assembler works out whether the 
specified offset should be represented as a 5-bit, an 
8-bit or a 16-bit offset. The programmer may force an 
8-bit offset by preceding the offset with a '<' 
character and may force a 16-bit offset by using a '>' 
symbol. It is not possible to force the assembler to 
generate a 5-bit offset. For example: 

LDD <4,X Forces 8-bit rather than 5-bit offset. 
STX >32,Y Forces 16-bit rather than 8-bit offset 

Indirect addressing 
Indirect addressing is indicated by surrounding the 
operand field with round brackets. For example: 

LDA (VALADD) Indirect extended 
STX (A,Y) Indirect indexed 

When using constant values within the operand field, 
the DREAM assembler allows a limited form of arithmetic 
to be used. If constant expressions using '+' and '-' 
are specified, DREAM will carry out the necessary 
arithmetic as it assembles the program. For example: 

LEAS BASE+8,U 
LDD #START - 10 
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BRA * + 12 

An asterisk (*) means the value of the program counter 
at the start of the current statement. Notice that 
this is not the same as the actual PC value which 
refers to the next instruction to be executed. 

4.1.4 The comments field 
The comments field is used to provide descriptive 
comment about the associated assembly code instruction. 
It must be separated by at least one space from the 
operand field but the convention when using the DREAM 
assembler is to separate the comments field from the 
remainder of the instruction by two or more spaces and 
to make the first symbol a semi-colon. For example: 

LDA T ; put top value in A 

Comments taking up an entire line may also be 
introduced by placing a '*' in column 1. Most M6809 
assemblers will recognise this as a comment and ignore 
the remainder of the line. For example: 

* An asterisk indicates a comment 

In order to make assembly language statements as 
readable as possible, it is best to adopt a fairly 
rigid, fixed format layout for instructions. The 
following layout is suggested: 

Columns 1-6 Label or blank if statement 
is unlabelled 

Columns 8-11 Mnemonic 
Columns 13-19 Operand 
Columns 22- Comment 

If the operand is more than eight characters long, it 
will obviously overflow into the comments field. 
Depending on the length of the comment, you may either 
continue it on the same line or start a new line with 
'*' and include the comment field on that line. In 
general, when all of a comment cannot fit on the 
instruction line, the continuation on succeeding lines 
should be aligned. 

Examples of this layout are: 

BEGIN LDD MAX ; Start with max 
SUBD #1 ; Take 1 off it 
CMPD MINVAL ; Compare with min. 
BEQ VALSEQ 

As with all layout conventions, there are many special 
cases which do not fit well with the convention. 
Slight changes may avoid taking a new line for a short 
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comment continuation or may make the program more 
readable. The programmer must use his common sense in 
this respect and modify the above rules accordingly. 

The output from the DREAM assembler consists of a 
listing of the source lines with each line preceded by 
the address of the corresponding machine instruction 
and the hexadecimal representation of the instruction 
itself. For example, assuming the instruction address 
was 4E40, this might appear: 

4E40 4C INCA ; increment pointer 
4E41 1F8B TFR A,DP ; and load DP 

Notice that the address is incremented according to the 
number of bytes in the instruction. We shall describe 
how the initial assembler address is set up in a later 
section (4.2.5) of this chapter. 

4.1.5 Assembling without an assembler 
If you don't have an assembler program but want to run 
machine code programs, you have to translate the 
assembly language statements to hexadecimal machine 
code by hand. This is only realistic if you have only 
a few statements to translate and you only do such 
translations fairly occasionally. 

There is enough information in Chapters 2 and 3 and 
in the appendices to allow you to translate from 
assembly language to machine code. You must keep 
careful track of the number of bytes taken up by each 
instruction so that your relative addresses are 
correct. It is best to make a table for yourself of 
the symbolic names which you use and the memory 
addresses which you have assigned to them. 

Once you have completed the translation from 
assembly code to machine code, you then load the 
hexadecimal representations of your machine 
instructions into memory and start executing them. 
This can be accomplished using another program called a 
loader. In the final section of this chapter, we 
provide a listing of a loader, written in BASIC, which 
POKES hexadecimal codes into memory. You may either 
then execute the machine code program with an EXEC 
command or you may include such a command in the loader 
so that the machine code is immediately executed. 

4.2 ASSEMBLER DIRECTIVES 

Assembler directives are instructions used by the 
programmer to give commands to the assembler. They do 
not cause machine instructions to be generated but they 
may alter internal assembler variables. Assembler 
directives are the means by which symbolic names are 
associated with addresses and they also allow the 
programmer to specify the initial values which memory 
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bytes should take before his program is executed. 
The operation of assembler directives can only be 

understood in the context of the general memory 
organisation which is assumed by the assembler. Figure 
4.1 shows this organisation for that part of memory 
used by the assembler. 

Fig. 4.1 Assembler memory map 

There is a large area of RAM which is reserved by 
the assembler as its work space. This workspace 
immediately follows the machine code of the assembler 
program in the Dragon's memory. 

At the top of this work space, the assembler creates 
its own internal tables which it uses in the 
translation of the programmer's assembly code to 
machine code. As the number of entries in these tables 
depends on the size of the program being assembled, the 
tables are variable in size. As new elements are added 
to the table, they are allocated lower memory 
addresses. Dynamically allocated areas of this sort are 
shown on memory maps as wavy lines with an arrow 
indicating the direction of growth. 

As an illustration of how this table is set up, say 
the top address in the assembler's work space is 6AFF. 
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The first table entry, which might be 8 bytes long, is 
allocated address GAFF. The following table entry has 
address 6AF8, the one after that 6AF0, and so on. The 
table grows downwards in memory as each succeeding 
element is allocated. 

As the assembly language program is translated, the 
generated machine code must be stored somewhere in 
memory. The area chosen by the assembler for the 
generated machine code is at the bottom of its work 
space and the generated machine code grows upwards in 
memory. 

The assembler uses an internal variable called the 
assembler program counter (APC) to keep track of where 
the next generated machine instruction is to be placed 
in its work space. As instructions are generated, APC 
is incremented by the length of the instruction in 
bytes. Some assembler directives also affect the value 
of APC and their effects are discussed along with the 
description of the directives in question. 

4.2.1 The EQU directive 
The equate directive is the directive which is used to 
associate a symbolic name with a constant decimal or 
hexadecimal value. It has the general form: 

<label> EQU <value> 

It is good programming practice to make extensive use 
of equate directives to name constants used in your 
program. If you chose a name related to the constant's 
function, this makes the program easier to understand. 
Furthermore, if you need to change the value of a 
constant, you merely need to change the equate 
directive rather than search through your program 
changing the absolute value every time it is used in an 
instruction. 

Examples of equates defining absolute constant 
values are: 

MAXINT EQU 32767 ; maximum allowed integer 
TABSIZ EQU 100 ; some table size 
OFF EQU $00 ; define a value meaning off 
ON EQU $FF ; a value meaning on 

The constant value in the equate directive may include 
other symbolic constants defined by an equate and may 
also include the symbols ' + ' and '-'. The assembler 
carries out the necessary arithmetic to compute the 
equated value. For example: 

TRUE EQU ON ; TRUE has value $FF 
FALSE EQU OFF ; FALSE = $00 
UTABSZ EQU TABSIZ - 15 ; UTABSIZ = 85 



78 

As well as being used to associate names with program 
constants, the EQU directive may also be used to name 
locations in a memory page when direct addressing is to 
be used. 

Recall that the direct addressing mode uses the DP 
register to hold the hi-byte of the memory address with 
the lo-byte of the address obtained from the 
instruction itself. Not only is this form of 
addressing space efficient as addresses only take up a 
single byte, it also means that memory locations can be 
reserved for variables in a position independent way. 

The programmer need not decide the absolute address 
in memory which is to be allocated to particular 
variables. Rather, he may set up their addresses as a 
displacement from the start of a page. Where that page 
actually resides in memory when the program is executed 
is governed by the setting of the DP register which may 
be assigned immediately before execution. We shall say 
more about position independence in Chapter 6. 

The equate directive is used to associate page 
addresses with symbolic names. For example: 

DELAY EQU $00 ; first byte in page 
CURPOS EQU $01 ; CURPOS takes up bytes 1 and 2 
INCH EQU $03 ; byte 3 

The names used in an equate directive must obey the 
normal rules for assembler labels. That is, they must 
start with a letter, contain only alphanumeric 
characters and may be no more than six characters long. 

The equate directive does not affect the assembler's 
program counter. Names and associated values are 
stored in an internal assembler table and, when the 
name is used in a program, its value is substituted for 
it. 

4.2.2 The FCB/FCC directive 
The FCB/FCC directive is used to format data bytes. 
That is, the programmer uses this directive to allocate 
store and to associate a particular value with each 
byte of that allocated memory. The general form of 
this directive is: 

[<label>] FCB <value list> 

The label is optional and must obey the usual rules for 
assembler labels. If a label is used, its value is 
deemed to be the address of the allocated data byte. 
The value list is a list of one or more initial values 
expressed as decimal numbers, hexadecimal numbers or 
character constants. 

In some assemblers, the directives FCB and FCC have 
different meanings with FCB used to format single bytes 
and FCC used to format ASCII character strings. In the 
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DREAM assembler, however, they are equivalent and are 
handled in exactly the same way. Therefore, the 
directive FCB may be replaced by FCC anywhere that it 
is used. 

Examples of FCB directives are: 

* Set up the name of a data area for an error message 
* The first byte holds the length of the message 
* The following characters hold the ASCII characters 
* of the message itself 
* 
ERR1 FCB 13,/NO INPUT CHAR/ 
* 
* Notice how strings are delimited by the / character 
* Set up a byte with value 1F (hex) 
* 

FCB $1F 

* Set up a 5 byte memory area with bytes initialised 
* to the hex values 8E, 8F, 90,91, and 92 

TAB1 FCB $8E,$8F,$90,$91,$92 

The FCB/FCC directive affects the assembler program 
counter. If APC has the value 5000 say when the FBC 
labelled ERR1 above is processed, its value after 
processing is 5000 + 14 (decimal), that is 500D. Note 
that if a value greater than FF (hex) is used with an 
FCB directive only the lo-byte of that value is used in 
the initialisation. 

4.2.3 The FDB directive 
The FDB directive is similar to the FCB directive. 
However, rather than formatting single data bytes, it 
formats 16-bit values taking up 2 bytes (1 word). It 
general form is: 

[<label>] FDB <value list> 

Examples of FDB directives are: 

DIGITS FDB 1,2,3,4,5,6,7,8,9,0 
MAXVAL FDB 1024 
INSUB FDB GETNUM 

The first two FDB examples above format data words to 
the specified values. In the third example, the 
constant filled in and named INSUB may be the value 
associated with the name GETNUM if GETNUM is defined 
via an EQU directive. Alternatively, if GETNUM is an 
instruction label, the location named INSUB is filled 
in with the address of the labelled instruction. 

This facility allows you to create tables of 
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addresses and then use indirect addressing to access 
the instructions or data whose addresses are kept in 
the table. For example: 

SUBTAB FDB INCHAR,OUTCH,INWRD, 
OUTWRD,RESET,CLOSE 

This directive might be used to create a table of 
subroutine addresses with the subroutine names given on 
the right hand side of the directive. 

Like FCB, FDB affects the assembler program counter, 
incrementing it by two for every word formatted. 

4.2.4 The RMB directive 
The RMB directive is used to reserve one or more memory 
bytes. It does not set them up to any specific value, 
it merely increments APC by the value specified in the 
directive. The general form of an RMB directive is: 

[<label>] RMB <value> 

The value may be either a symbolic, hexadecimal or 
decimal constant. For example: 

INCHAR RMB 1 ; reserves a single byte 
OUTBUF RMB 256 ; reserves a 256 byte buffer 

Typically, RMB is used to reserve space which will 
subsequently be allocated values in I/O operations. 

4.2.5 The ORG directive 
The ORG directive is used to assign a value to APC and, 
hence, sets up the logical origin of the generated 
machine code which follows that directive. It is not 
obligatory to include an ORG directive in a program. 
If there is no ORG directive, the DREAM assembler sets 
up its program counter to have an initial value equal 
to the bottom of its work space. 

The general form of an ORG directive is: 

[<label>] ORG <address> 

Examples of this directive are: 

ORG $5000 ; APC = 5000 (hex) 
NEWSEG ORG * + 128 ; * means current value of APC 
* This directive is equivalent 
* to RMB 128 

All the examples in this book have been tested with a 
code origin at memory address 4E21 (20001 decimal). 
This is set up with an ORG $4E21 statement as shown in 
the example in section 4.3 below. 
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4.2.6 The PUT directive 
The PUT directive is used to tell the assembler where, 
in RAM, the generated object code should be placed. It 
is a means of overriding the assembler's normal placing 
of generated code at successive addresses starting at 
address 4E21 which is the bottom of its work space. 

The general form of a PUT directive is: 

PUT <address> 

Normally, a PUT directive is preceded by an ORG 
directive to set the APC to the address where the 
generated code is to be placed. This is not 
obligatory, however, if you are going to move the code 
before executing it or if the code is completely 
position independent. 

4.2.7 The SETDP directive 
The SETDP directive is used to tell the assembler the 
current value of the direct page register DP. Remember 
that the assembler decides whether to use direct or 
extended addressing when a symbolic name is used in the 
address field of an instruction. To make this 
decision, it must know the value of DP at that point 
and SETDP is used to provide that information. The 
general form of the directive is: 

SETDP <hex value) 

The operand must be a hexadecimal value in the range 00 
to FF. The SETDP directive only provides information to 
the assembler; it does not cause instructions to be 
generated to assign a value to the direct page 
register. It is the programmer's responsibility to 
ensure that the actual run time value of DP is 
consistent with the value used in a SETDP directive. 

4.3 EXAMPLE PROGRAMS 

In this section we present two complete, working 
programs which the user may type into his machine and 
execute. The first of these programs is a loader 
program, written in BASIC, which allows the user to 
POKE machine code into particular locations in the 
Dragon's memory. This code may then be executed. 

The other example program is presented in both BASIC 
and assembler. This is a simple program designed to 
illustrate just how much faster machine code programs 
can be. The program fills the display screen with every 
character, one after the other. When the BASIC version 
of the program executes, you will see that this 
operation takes about 2 seconds per screenful. The 
assembly language version fills the screen with each 
character in a fraction of a second. The machine code 
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for the assembly language version of the screen filler 
is included, in hexadecimal, as the DATA statements in 
the BASIC loader. 

Both of these examples are commented and should need 
no further explanation. 

10 ' Machine code loader 
11 ' Machine codes in hex are poked into memory 
12 ' locations starting at 20001 then execed 
20 READ LA ' LA = load address (start of program) 
30 READ EA ' EA = address of first instruction 
40 PA = EA 'to be executed 
50 READ HB$ ' Hex constants 
60 IF HB$="END" THEN 100 
70 POKE PA,VAL("&H"+HB$) ' Poke value into memory 
80 PA = PA + 1 ' Increment address 
90 GOTO 50 
100 PRINT "MACHINE CODE LOADED" 
110 PRINT "LOAD ADDRESS IS ";LA;"(DEC)"; 
111 PRINT HEX$(LA);"(HEX)" 
120 PRINT "END ADDRESS IS "; PA-1;"(DEC)"; 
121 PRINT HEX$(PA-1);"(HEX)" 
130 PRINT "EXEC ADDRESS IS";EA;"(DEC)"; 
131 PRINT HEX$(EA);"(HEX)" 
140 PRINT "YOU ARE ADVISED TO SAVE LOADER " 
141 PRINT "BEFORE RUNNING M/C CODE" 
142 'If you want to execute the loaded code 
143 'immediately, you should put an 
144 'EXEC EA statement here. If you do this 
145 'for this program, you lose BASIC print 
146 'information 
150 DATA 20001 'Load address here 
160 DATA 20001 'Execute address here 
165 ' You put your own machine code in hex 
166 ' here to load your hand translated 
167 ' programs 
170 DATA 34,12 ' Machine code for the 
180 DATA 86,00 ' Screen filler program 
190 DATA 8E,04,00 ' given below 
200 DATA A7,80 
210 DATA 8C,06,00 
220 DATA 25,F9 
230 DATA 4C 
240 DATA 81,80 
250 DATA 25,Fl 
260 DATA 35,92 
270 DATA END 

Program 4.1 BASIC machine code loader 

10 ' Fills screen with characters with codes 
20 ' 0 to 127 in turn 
30 FOR CH = 0 TO 127 
35 ' Screen RAM addresses are from &H400-&H5FF 
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40 FOR SC = &H400 TO &H5FF 
50 POKE SC,CH 
60 NEXT SC 
70 NEXT CH 

Program 4.2 BASIC screen filler 

* SCRFL - fill screen with characters 

* Register inputs NONE 
* 

ORG $4E21 
SCRFL PSHS A,X ; Save registers 

LDA #0 ; First character 
NXTSC LDX #$400 ; Screen base address 
PRCH STA ,X+ ; Store character 

CMPX #$600 ; At end of screen? 
BLO PRCH ; No, next character 
INCA ; Go on to next character 
CMPA #128 
BLO NXTSC ; Do another screenful 
PULS A,X,PC ; Restore and return 

Program 4.3 Assembly language screen filler 



Chapter 5 

From BASIC to assembly code 

In this chapter we describe the assembly language 
equivalents of the most commonly used BASIC statements. 
As well as the literal translations of BASIC to 
assembly language, we show how these constructs can 
often be implemented in a more efficient way by 
removing some of the redundancy inherent in BASIC. 

The assembly language programmer must obviously know 
the mnemonics for the M6809, the register names and the 
symbolism for the M6809 addressing modes. It may seem a 
daunting task to memorise all this information, 
although it is less so than memorising about 1400 
machine instructions! However, the consistent and 
orthogonal nature of the M6809's instruction set makes 
the task less difficult than might at first be supposed 
and, after a little practice, the programmer will 
easily remember all the mnemonics which he needs. 

The basic building blocks of programs are assignment 
statements, conditional statements, loops and 
statements for input and output of data. We describe, 
in some detail, how each of these may be implemented in 
assembly language. We also cover the declaration and 
calling of BASIC-like subroutines and the 
representation and manipulation of arrays. The 
notation which we use is similar to that used in 
previous chapters. However, if a symbolic name is used 
for a memory location, we use it in comments here as if 
it was a BASIC name - we do not precede it with MEM. 

5.1 ASSIGNMENT STATEMENTS 

Assignment statements in BASIC are used to assign a 
constant, the result of an arithmetic expression or the 
value of a memory location to some other memory 
location. For ease of reference, we may give symbolic 
names to the memory locations involved although, if the 
memory access routines PEEK and POKE are used, we 
actually signify the absolute memory locations to be 
accessed. We describe PEEK and POKE later and 
concentrate here on assignments which have the general 
form: 

<name> = <expression> 

84 
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The <name> on the left side of the = sign may be either 
a variable name or may be a reference to an element of 
an array. The <expression> on the right side of the 
equals sign may be a constant, a variable name, an 
array element reference or an arithmetic expression 
consisting of two or more operands separated by 
arithmetic operators such as + and *. 

Reference to array elements will be dealt with later 
so, in this section, we only describe assignments where 
numeric constants and variables are used. We shall 
make the further simplification that these constants 
and variables may only take 8-bit or 16-bit integral 
values represented as unsigned numbers or in two's 
complement notation. 

This is not too great a limitation as many practical 
applications of computers don't need real numbers. The 
provision of real number arithmetic in most 
microcomputers is made using software routines which 
manipulate pairs of 16-bit quantities representing the 
real number. This is a fairly complex process, and if 
the reader is interested in how it's done he should 
refer to one of the computer science textbooks 
suggested in the reading list. 

In general, assignment statements on the M6809 are 
implemented using the accumulator registers A, B and 
their catenation D when 16-bit numbers are involved. 
Although it is possible to make use of the index 
registers X, Y, S, and U, these are usually reserved 
for the storage of addresses. 

The basic outline of an assignment statement in 
assembly language is: 

Evaluate RH expression into an accumulator register. 
Store accumulator in memory. 

For example, the assembly language equivalent of the 
simple BASIC statement M = 7 is: 

LDA #7 ; A = 7 
STA M ; M = A 

Notice how immediate addressing is used to specify that 
a constant value is to be loaded into a register. A 
very common mistake made by novice assembly language 
programmers is to forget the # symbol indicating 
immediate addressing. 

LDA 7 ; A = PEEK(7) 
STA M ; M = A 

The BASIC code documenting the assembly language 
instructions shows how this gives a completely 
different result. Rather than a constant value 7 
being loaded into A, the contents of memory byte 
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7 (which may be any value between -128 and 127) are 
loaded into the A register. 

If a constant value between -128 and 127 is being 
assigned, we may use either the A or the B register as 
the accumulator. If the value lies outside this range, 
we must use the D register for the assignment. For 
example, the BASIC statement T = -3842 has the assembly 
language equivalent: 

LDD #-3842 ; D = -3842 
STD T ; T = D 

As D is a 16-bit register, the STD operation results in 
information being stored in two consecutive memory 
bytes. If the address of T is 4E22, say, the 
assignment results in the hi-byte of D being assigned 
to 4E22 and the lo-byte being assigned to 4E23. 

Assignments of the form M = N are implemented in 
assembly language in a comparable way: 

LDA N ; A = N 
STA M ; M = A 

If the operands in the assignment T = R are 16-bit 
quantities, the D register must be used: 

LDD R ; D = R 
STD T ; T = D 

When the right side of the assignment is an arithmetic 
expression consisting, in general terms, of constants, 
variables and arithmetic operators, the assembly 
language programmer must arrange the evaluation of this 
expression in an accumulator. The evaluated value is 
then stored. For example, the assignment statement M = 
N + P has the assembly language equivalent: 

LDA N ; A = N 
ADDA P ; A = A + P 
STA M ; M = A 

Notice that we are ignoring the possibility of overflow 
and carry here. In some arithmetic evaluations, this 
must be taken into account but, as we are simply 
illustrating concepts, we will not introduce this 
unnecessary complication. 

If the assignment uses a mixture of 8-bit and 16-bit 
values, the D register must be used and, in some cases, 
8-bit values will automatically be extended to 16 bits. 
For example, assuming T and R are 16-bit variables, the 
assignment R = T - 10 may be implemented as follows: 

LDD T ; D = T 
SUBD 10 ; D = D - 10 
STD R ; R = D 
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A 16-bit subtraction is automatically carried out in 
this case. However, if mixed 8-bit and 16-bit 
variables rather than constants are used in arithmetic 
expressions, the programmer must be careful not to use 
a D register operation on an 8-bit variable. If such 
an operation is specified, the addressed variable and 
the following memory byte (which is not wanted) will be 
used in the operation. 

For example, say T and R are 16-bit signed 
quantities and M is an 8-bit signed quantity. A 
careless assembly language programmer might translate 
the assignment T = M + R as follows: 

LDD M ; D.hi = MEM(M): D.lo = MEM(M + 1) 
ADDD R ; D = D + R 
STD T ; T = D 

A completely incorrect value for the addition will 
result because of the LDD operation which does not load 
the 8-bit value of M into D. 

A correct assembly code sequence for this mixed-
length arithmetic takes into account the fact that the 
lo-byte of D is the B register. The sign extend 
instruction is also used to make sure that the signs of 
the 16-bit and the 8-bit values are the same. 

LDB M ; B = M 
SEX ; Extend sign bit of B to A 
ADDD R ; D = D + R 
STD T ; T = D 

This mixed-length arithmetic becomes more complex when 
a subtraction is involved and the order in which 
operands are loaded into D is significant. Assuming T, 
R, and M have the same values as before, the assignment 
T = R - M cannot be implemented using the same sequence 
as above because the SUBD instruction has no facilities 
for sign extension. 

There are various different ways of implementing 
this type of assignment in assembly language. The 
simplest is to convert the 8-bit value to a 16-bit 
value, store it in some temporary location and then 
perform the subtraction using 16-bit operations only. 
For example: 

LDB M ; B - M 
SEX ; D = B (propagate sign) 
STD ,--S ; Store M on hardware stack 

* Auto decrement S so that it points to 
* free location on stack 

LDD R ; D = R 
SUBD ,S++ ; D = R - M 

* Note how auto increment used to reset 
* stack pointer 

STD T ; T = D 
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There are no problems in implementing addition and 
subtraction operations in assembly language but 
generalised multiplication and division have no 
corresponding machine instructions. These operations 
must be implemented by calling machine language 
routines and it is beyond the scope of this section to 
explain how these routines may be programmed. 

However, multiplication and division of 8-bit 
unsigned quantities by numbers which are powers of 2 
may be implemented very simply by using the arithmetic 
shift instructions ASR and ASL. Shifting a number left 
n times is equivalent to multiplying it by 2n and 
shifting it right n times is equivalent to dividing 
that number by 2n. Naturally, the division is an 
integer division operation with the remainder 
discarded. 

For example, if I and J are unsigned 8-bit integers, 
the assignment I = J * 4 might be implemented in 
assembly language as follows: 

LDA J ; A = J 
ASLA ; A = A * 2 
ASLA ; A = A * 2 
STA I ; I = A 

Similarly, J = I/8 might be implemented: 

LDA I ; A = I 
ASRA ; A = A/2 
ASRA ; A = A/2 
ASRA ; A = A/2 
STA J ; J = A 

Using shifts to multiply and divide signed quantities 
is more complex because of the need to ensure that the 
sign of the result is correct. We leave it as an 
exercise to the reader to work out how to implement 
signed multiplication and division by powers of 2. 

The PEEK and POKE functions 
The BASIC functions PEEK and POKE allow direct 
reference to individual memory bytes. Whereas PEEK is 
always used as the right hand side of a normal BASIC 
assignment, POKE is a specialised kind of assignment. 
Therefore, T = PEEK(&H0406) assigns the byte value at 
memory address 0406 (hex) to T and POKE ASC("*"),&H0500 
assigns the code for '*' to the byte in memory at 
address 0500. 

PEEK and POKE are very easily implemented in 
assembly language using load and store instructions. 
The assembly language equivalent of the above PEEK 
instruction is: 

LDA $0406 ; A = MEM(0406) 
STA T ; T = A 
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The POKE operation has the equivalent assembly code: 

LDA #'* ; A = '*' 
STA $0500 ; T = A 

The only difference between straightforward assignments 
and PEEK and POKE is that. rather than symbolic 
addresses, absolute memory addresses are used. 

5.2 CONDITIONAL CONSTRUCTS 

Conditional constructs are fundamental program building 
blocks which allow other statements to be selected for 
execution depending on the truth of some condition. In 
BASIC, conditional execution of statements or groups of 
statements is implemented using IF-THEN statements in 
combination with GOTO statements. 

More generally, conditional constructs can be 
partitioned into three classes: 

(1) Single armed conditionals 
These may be expressed: 

if <condition> then <action> 

If the specified condition is true, the <action> 
is executed otherwise it is skipped. 

(2) Two armed conditionals 
These have the form: 

if <condition> then <actionl> else <action2> 

If the given condition is true, <actionl> is exe­
cuted and <action2> is skipped. If the condition 
is false, <actionl> is skipped and <action2> is 
executed. 

(3) Multi-armed conditionals 
These are really conjunctions of single armed 
conditionals: 

if 
<conditionl> then <actionl> 
<condition2> then <action2> 
<condition3> then <action3> 

<conditionN> then <actionN> 

The conditions are evaluated in turn. If the 
evaluated condition is false, the associated ac­
tion is skipped and the following condition is 
evaluated. If the condition is true, the associ­
ated action is executed and the remainder of the 
condition/action pairs are skipped. In BASIC, 
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multi-armed conditionals are usually implemented 
as a sequence of IF-THEN statements. 

We shall consider each of these in turn and show how 
they may be implemented in assembly language. The 
approach which we use is to show first how the 
conditional is implemented in BASIC. We then describe 
how this may be literally translated into assembly 
language and finally optimised to remove redundancy. 

5.2.1 Single armed conditionals 
In BASIC, single armed conditionals are expressed as an 
IF-THEN statement if only a single statement is to be 
conditionally executed. If a number of statements are 
to be executed if the condition is true, a goto is used 
to skip over these statements if the given condition is 
false rather than true. 

For example, if we want to swap the values of I and 
J if J is greater than I, we might write the following 
code: 

100 ' Swap if J > I. So skip if J <= I 
110 IF J <= I THEN 200 
120 T = J 
130 J = I 
140 I = T 
200 . . . 

In assembly language programming, we use exactly the 
same technique of reversing the sense of the comparison 
and skipping if this (reversed) condition is true. The 
outline for this is: 

Make comparison setting CC bits 
Branch if NOT desired condition to L 

Code to be executed if original condition true 

L 

Assuming that I and J are unsigned 8-bit values, the 
above BASIC sequence may be translated to assembly 
language as follows: 

LDB J ; B = J 
CMPB I ; compare B with I 
BLS L200 ; if J <= I goto L200 
LDB J ; B = J 
STB T ; T = B 
LDB I ; B = I 
STB J ; J = B 
LDB T ; B = T 
STB I ; I = B 

L200 
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This literal translation may be optimised by noting 
that the first instruction loads the value of J into B 
and the same instruction is repeated after the 
comparison. As comparison does not affect register 
values, the second load is unnecessary. Furthermore, 
we are obliged in BASIC to use an intermediate variable 
T in the swap sequence but in assembly code this is 
unnecessary. We may simply use another register. An 
optimised version of the swap sequence is: 

LDA J ; A = J 
CMPA I ; compare A with I 
BLS L200 ; if A <= J then goto L200 
LDB I ; B = I 
STB J ; J = B, ie J takes original value of I 
STA I ; I = A, ie original value of J 

Simple BASIC IF-THEN statements of the form IF P = Q 
THEN P = P + 1 may be directly translated to assembly 
language as follows: 

LDA P 
CMPA Q ; Compare A and Q 
BNE L1 ; if A <> Q then goto L1 
LDA P ; A = P 
ADDA #1 ; A = A + 1 
STA P ; P = A 

Again, this may be optimised by using the fact that P 
is loaded into a register to evaluate the condition and 
then immediately reloaded after this comparison. This 
second load can be eliminated. We may also use the INC 
instruction to add 1 to a value rather than the add 
instruction. The advantage of this is that INC 
occupies less space and executes more quickly than ADD. 

An optimised form of the above sequence is: 

LDA P ; A = P 
CMPA Q ; Compare A and Q 
BNE L1 ; if A <> Q then goto L1 
INCA ; A = A + 1 
STA P ; P = A 

L1 .... 

In fact, we can reduce the number of instructions still 
further by using the ability of INC to operate on a 
memory location: 

LDA P 
CMPA Q 
BNE L1 
INC P 

L1 .... 
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Assuming direct addressing of both P and Q, the 4 
instruction sequence takes up 8 memory bytes, the 5 
instruction sequence occupies 9 memory bytes and the 
literal translation of the BASIC code takes up 12 
memory bytes. 

5.2.2 Two armed conditionals 
Two armed conditionals are implemented in BASIC by 
using a combination of IF-THEN statements and GOTO 
statements. For example, the condition if <condition> 
then <action1> else <action2> is written: 

100 IF <condition> THEN 200 
110 <action2> 
120 GOTO 300 
200 <action1> 
300 . . . 

Notice how we reverse the order of the actions and skip 
over the second action if the condition is true. 
Exactly the same outline structure is used when 
implementing two armed conditionals in assembly 
language. 

Evaluate condition 
Branch if true to L1 
Action2 
Branch unconditionally to L2 
L1 Action1 
L2 • • • • 

For example, if we wish to assign the higher of two 
numbers to some other variable, we might write in 
BASIC: 

100 IF P > Q THEN 200 
110 ' P <= Q here 
120 MAX = Q 
130 GOTO 300 
200 MAX = P 
300 ... 

Given that P, Q and MAX are unsigned values, direct 
translation of this BASIC sequence to assembly language 
gives: 

LDA P ; A = P 
CMPA Q ; Compare A and Q 
BHI L200 ; if A > Q then goto L200 
LDA Q ; A = Q 
STA MAX ; MAX = A 
BRA L300 ; goto L300 

L200 LDA P ; A = P 
STA MAX ; MAX = A 

L300 
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Again, optimisation of this sequence is possible. The 
statement labelled L200 is a redundant load as A 
already contains the value of P at that point. 
Furthermore, both actions end with an identical store 
operation so it may be factored out and executed after 
one or the other action is complete. An optimised 
version is: 

LDA P 
CMPA Q 
BHI L200 ;if P > Q goto L200 
LDA Q ; A = Q 

L200 STA MAX ; MAX = A 

A sequence of 8 assembly language instructions has been 
optimised to 5 instructions which do exactly the same 
thing. We must emphasise however that it is not good 
programming practice to try to write optimised code 
directly. This is an error-prone process because the 
programmer is liable to become caught up in 
optimisation details and to lose track of the correct 
solution. With high-level language code to serve as a 
master solution, the introduction of errors through 
optimisation is much less likely. 

5.2.3 Multi-armed conditionals 
Multi-armed conditionals are conditional statements 
where several conditions are evaluated and the action 
following the true condition is executed. Readers 
familiar with Pascal will recognise the case statement 
as a form of multi-armed conditional but in BASIC it 
must be implemented as a sequence of IF-THEN 
statements. For example: 

10 IF T = 7 THEN AGE = BAND1 
20 IF T = 9 THEN AGE = BAND2 
30 IF T = 14 THEN AGE = BAND3 
40 IF T = 15 THEN AGE = BAND4 
50 .... 

Of course, this may be translated into assembly code as 
a sequence of IF-THEN statements as described above. 
However, multi-armed conditionals often use the same 
value in all tests and often have similar actions with 
different values being assigned to the same variable in 
each action. 

The following structure shows how multi-armed 
conditionals can often be implemented. 

Load test variable 
if NOT(testl) goto T2 
Load value to be assigned 
goto STORE 
T2 if N0T(test2) then goto T3 
Load T2 value 
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goto STORE 

STORE Store value to be assigned 

The above sequence of IF-THEN statements may be coded 
in assembly language: 

LDA T ; Load variable to be tested 
CMPA #7 ; First test, compare A with 7 
BNE L1 ; if A <> 7 then goto L1 
LDB BAND1 ; variable to be assigned into B 
BRA L4 ; Jump to store 

L1 CMPA #9 ; Second test, compare A and 9 
BNE L2 ; if not equal, go on to next test 
LDB BAND2 
BRA L4 

L2 CMPA #14 
BNE L3 ; if A <> 14 then goto L3 
LDB BAND3 
BRA L4 

L3 CMPA #15 ; last test 
BNE L5 ; do nothing if not equal 
LDB BAND4 

L4 STB AGE ; assign to AGE 
L5 • • • • 

Compound conditional expressions 
So far, we have looked at conditional statements where 
the condition involved is a simple condition of the 
form <operand> <conditional operator> <operand>. 
However, compound conditional statements using ANDs and 
ORs to connect conditions are also frequently used. 
These have the general form: 

<simple condition> <logical operator> <condition> 

where permitted logical operators in BASIC are AND and 
OR. 

In BASIC, therefore, the following are all valid 
conditional expressions: 

P = Q AND T >= R 
J > I AND J < K 
J > I OR K = L 
K = J AND (P > Q OR T >= R) 

When such conditions are implemented in assembly 
language we may write them so that it is often only 
necessary to test a single condition rather than the 
conditions on each side of the AND or OR operator. This 
is possible because we know that both conditions must 
be true for an AND operation to be true and that both 
conditions must be false for an OR operation to be 
false. 
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Therefore, if we test the first condition in an AND 
operation and find it false there is no need to test 
the second condition. Similarly, if we test the first 
condition in an OR operation and find it true, the 
entire expression must be true. The second condition 
need not be tested. For AND operations, the outline 
structure of an assembly language program is: 

Test left hand condition 
If false goto L1 
Test right hand condition 
If false goto L1 
Actions if condition is true 
L1 ... 

For OR conditional operators, the outline is similar: 

Test left hand condition 
If true goto L1 
Test right hand condition 
If false goto L2 
L1 actions if condition is true 
L2 . . . . 

We illustrate this by showing how BASIC IF-statements 
with compound conditions may be expressed in assembly 
code. Again, assume that all variables are unsigned 8-
bit quantities. 

IF P = Q AND T >= R THEN M = N 

The assembly language equivalent of this is: 

LDA P ; A = P 
CMPA Q 
BNE OUT ; if P <> Q skip second condition 
LDA T ; A = T 
CMPA R 
BLO OUT ; if T < R skip action 
LDA M 
STA M 

OUT .... 

Notice how only a single test is necessary if P is not 
equal to Q. 

IF (P > Q OR T >= R) AND K = J THEN M = N 

To implement this in assembly language we re-order it 
to test first if K = J. If this is false, there is no 
need to carry out any more tests. 

LDA K ; A = K 
CMPA J 
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BNE OUT ; If A <> K do no more 
LDA P 
CMPA Q 
BHI OK ; OR condition is true, skip to action 
LDA T 
CMPA R 
BLO OUT ; Skip over action 

OK LDA N 
STA M 

OUT 

5.3 LOOP CONSTRUCTS 

Loop constructs are those programming constructs which 
allow the programmer to specify that a group of 
statements is to be executed a number of times. They 
take three fundamental forms: 

(1) For loops 
These execute the loop a specified number of 
times. A loop counter variable is used and the 
loop terminates when this variable reaches a 
specified value. 

(2) While loops 
These execute the statements in the loop while 
some condition remains true. Loop execution stops 
as soon as this condition becomes false. 

(3) Repeat loops 
Repeat loops cause the loop to be executed until 
some condition becomes true. The important dis­
tinction between repeat loops and while loops is 
that the test for loop termination comes at the 
end of a repeat loop whereas it comes at the be­
ginning of a while loop. Repeat loops, therefore, 
always execute at least once. 

BASIC provides facilities which allow each of these 
looping constructs to be expressed. For loops are 
constructed using FOR and NEXT statements and both 
while and repeat loops are built from combinations of 
IF-THEN and GOTO statements. 

We shall now look at each of these loop constructs 
in turn and see how they may be expressed in assembly 
language. 

5.3.1 For loops 
For loops are loops which execute a given number of 
times. They have a controlling for-loop variable which 
is incremented or decremented by one or by some 
programmer specified value until it reaches a 
terminating value. For example, consider the following 
BASIC program which sums the integers between 1 and N, 
where N is some positive number. 
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100 TOT = 0 
110 FOR I = 1 TO N 
120 TOT = TOT + I 
130 NEXT I 

On completion of this program fragment, the value of 
TOT will be the desired sum. To see how this might be 
expressed in assembly code it is best to consider it in 
primitive terms using only IF-THEN and GOTO statements 
to implement looping. 

100 TOT = 0 
110 I = 1 
120 IF I > N THEN GOTO 160 
130 TOT = TOT + I 
140 I = I+1 
150 GOTO 120 
160 

Now we have reduced the loop to conditionals and gotos 
which we know how to express in assembly language: 

CLR TOT ; TOT = 0 
LDA #1 ; A = 1 
STA I 

LOOP LDA I ; A = I 
CMPA N 
BHI OUTLP ; IF I > N stop looping 
LDA TOT 
ADDA I 
STA TOT 
INC I ; Notice use of INC rather than ADD 
BRA LOOP 

OUTLP .... 

In this example we have implemented the statement I=I 
+ 1 as INC I which appears to be a sensible 
optimisation. However, if we look at the body of the 
loop we see that I is not actually modified in the loop 
body so we can keep the loop counter in a register for 
the duration of the loop. 

CLR TOT ; TOT = 0 
LDB #1 ; B = 1, loop counter 

LOOP CMPB N 
BHI OUTLP ; if B > N then skip 
TFR B,A ; A = B 
ADDA TOT ; A = A + TOT 
STA TOT ; TOT = A 
INCB ; B = B + 1 
BRA LOOP 

OUTLP .... 

The above code shows how the for loop may be 
implemented when TOT is an 8-bit value. If TOT is a 
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16-bit value, an alternative strategy may be adopted. 
Because of the existence of the register add 
instruction ABX, the B register may be used to hold the 
loop counter and the X register the sub-total as the 
loop is executed. 

LDX #0 ; X = 0, initial total 
LDB #1 ; Loop counter 

LOOP CMPB N 
BHI OUTLP ; If B > N then goto OUTLP 
ABX ; X = X + B 
INCB ; B = B + 1 
BRA LOOP ; goto LOOP 

OUTLP STX TOT ; TOT = X 

You can see from these examples that there is no single 
'best' way of implementing for loops in assembly 
language. Rather, if optimal code is required, the 
programmer must look at the statements within the loop 
and code his loop with how they interact with the loop 
counter. 

As a final example in this section, we show how a 
FOR-NEXT loop using a negative step might be 
implemented in assembly code. This example is also our 
first introduction to arrays. The program fragment 
assigns those numbers between 100 and 50 which are 
divisible by 8 to adjacent array elements. Therefore, 
the first element holds 96, the second 88, the third 80 
and so on. In BASIC, this may be written as follows: 

100 I=0 
110 FOR J = 100 TO 50 STEP -2 
115 RM = J - (INT(J/8) * 8) 
120 IF RM <> 0 THEN 150 
130 ARR(I) = J 
140 I = I + 1 
150 NEXT J 

A completely literal translation of this program is not 
possible because there is no direct equivalent in 
assembly language to the divide operator. However, the 
calculation of the remainder may be simulated by using 
the fact that a binary number which is divisible by 8 
always has its 3 least significant bits (bits 0-2) 
equal to 000. If the bit pattern 00000111 is anded with 
a number and the result is zero then bits 0-2 of that 
number must be 000 and the number is divisible by 8. 

In the assembly language example below, the array 
ARR is accessed by placing the address of its first 
element in register X. Indexed addressing is then used 
to access this and succeeding elements. 

CLR I ; I = 0, not 1 as assembly language 
* array indexes always start at 0 
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LDA #100 
STA J ; J = 100 

LOOP LDA J 
CMPA #50 
BLO OUTLP ; if J < 50 then goto OUTLP 
ANDA #$F8 ; AND with bit pattern 11111000 
CMPA J ; Compare anded value with original 
BNE L150 ; if not divisible by 8 goto L150 
LDB I 
STA B,X ; Register B holds array index 
INCB 
STB I ; I = I + 1 

L150 LDA J ; next J 
SUBA 2 
STA J ; J = J - 2 
BRA LOOP ; Back to LOOP 

OUTLP 

This code may be optimised by making use of registers 
to hold the value of the loop counter J and the array 
index I. We leave this optimisation as an exercise for 
the reader. 

5.3.2 While loops 
While loops are loops which execute while some 
condition is true. When this condition becomes false, 
execution of the loop terminates. In BASIC, while 
loops are implemented using IF-THEN and GOTO 
statements. 

For example, consider the following while loop: 

count = 0 
while m > n do 

m = m - n 
count = count + 1 

end while 

In BASIC, this loop might be written: 

100 COUNT = 0 
110 IF M <= N THEN 150 
120 M - M - N 
130 COUNT = COUNT + 1 
140 GOTO 110 
150 

It is a straightforward task to translate this to 
assembly language using the techniques which we have 
already described for converting IF-THEN and GOTO 
statements to assembly code: 

CLR COUNT ; COUNT = 0 
WLOOP LDA M 

CMPA N 
BLS OUTLP ; If M <= N goto OUTLP 
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LDA M 
SUBA N 
STA M ; M = M - N 
INC COUNT ; COUNT = COUNT + 1 
BRA WLOOP 

OUTLP 

As usual, the direct translation of BASIC to assembly 
code may be optimised by removing redundancies and 
making more effective use of the processor registers. 

CLRB ; Use B to hold COUNT 
LDA M ; A = M 

WLOOP CMPA N 
BLS OUTLP ; If M <= N goto OUTLP 
SUBA N ; M = M - N. 

* Don't store back into M 
* as value is needed 

INCB ; COUNT = COUNT + 1 
BRA WLOOP 

OUTLP STB COUNT ; COUNT = B 
STA M ; M = A 
• * • • 

Although there are exactly the same number of 
instructions in this optimised sequence, the number of 
instructions executed within the loop has been reduced 
from 8 to 5. As these are the instructions which are 
each executed several times (once for each loop 
execution), this reduction means that the optimised 
program will run more quickly than its unoptimised 
equivalent. 

5.3.3 Repeat loops 
Repeat loops and while loops are similar. The most 
important difference is that the test for loop 
termination in a repeat loop comes at the end of the 
loop whereas in a while loop the termination test is 
placed at the start of the loop. The result of this is 
that repeat loops always execute at least once whereas, 
if the while test is initially false, the while loop 
will not execute at all. Again, the BASIC programmer 
uses IF-THEN and GOTO statements to implement repeat 
loops. 

For example, consider the following repeat loop: 

repeat 
m = m + t 
p = p + m 

until p >= n 

In BASIC, this might be written: 
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100 M = M + T 
110 P = P + M 
120 IF P < N THEN 100 

Translating this BASIC program to assembly language 
results in the following program fragment: 

RLOOP LDA M 
ADDA T 
STA M ; M = M + T 
LDA P 
ADDA M 
STA P ; P = P + M 
LDA P 
CMPA N 
BLO RLOOP ; If P < N goto RLOOP 

We leave the optimisation of this assembly code 
sequence as an exercise for the reader. 

5.4 GOTO STATEMENTS 

Although you may never have considered them as such, 
the only function of BASIC GOTO statements is to 
provide a means for the programmer to implement 
conditional statements and loop statements. You will 
have surmised by now that the equivalent, in assembly 
code, to BASIC'S GOTO statement is the unconditional 
branch instruction BRA <label>. 

There is also an alternative form of the BASIC GOTO 
in assembly language and that is the unconditional jump 
instruction JMP. Executing a JMP instruction causes the 
program counter to be set to the value of JMP's 
operand. Unlike the BRA instruction where the operand 
is added to or subtracted from PC, JMP's operand is not 
a relative but is an absolute value. 

In general, you will probably find that you use BRA 
more often than JMP as it is part of the fundamental 
mechanism involved in the implementation of loops and 
conditional statements. 

5.5 INPUT AND OUTPUT 

One of the most significant advantages of programming 
in a language like BASIC, rather than in assembly 
language, is the fact that BASIC provides easy-to-use 
statements for the input and output of program data. 
Generalised input/output programming is very complex; 
indeed, we devote the whole of Chapter 8 to this topic, 
and the BASIC system hides much of this complexity from 
the programmer. 

In BASIC, we may say INPUT N in order to read a 
number from the keyboard into variable N. Similarly, 
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PRINT N prints the contents of the variable N on the 
display screen. When you think of it however, you 
don't really type the binary form of a number on the 
keyboard nor do you get the binary pattern representing 
the number printed on the screen. Rather, you type 
characters, which happen to be the digits making up the 
number required, and you read characters on the screen. 

The BASIC system contains routines which convert 
character sequences, say '5' and '8', to the binary 
representation of 58. Similarly, when printing a 
number say -326, the PRINT routine converts the binary 
pattern representing -326 to the characters '-', '3', 
'2' , '6' . 

The assembly language programmer does not have ready 
access to these BASIC conversion routines so must 
always deal with input and output in terms of 
characters rather than numbers. If conversion to and 
from numbers is required, you must write your own 
conversion routines for this task. Some of these 
routines are provided as part of the machine code 
monitor program given in the final section of this 
chapter. 

As I/O programming is described in general in 
Chapter 8, we only describe very basic facilities here 
which allow you to input characters from the keyboard 
and output characters to the screen. These operations 
are carried out by calling subroutines which are an 
inherent part of the Dragon's input/output system. 

We call the routine which is used to input 
characters from the keyboard INCH. The details of how 
this routine works are not important, all the user must 
know is how to call this routine and the results of the 
routine call. When INCH is called, it interacts with 
the keyboard controller and returns an 8-bit value in 
the A accumulator. This value is either zero, which 
means that no key has been pressed, or is a code 
representing the input character. 

The key code returned by INCH is, in most cases, the 
ASCII value of the character typed by the user. The 
exceptions to this, when another value is returned in 
A, are shown in the table below. 

Character 

Up arrow 
Shift up arrow 
Down arrow 
Shift down arrow 
Shift @ 
BREAK 
Shift BREAK 
Left arrow 
Shift left arrow 
Right arrow 

Hex Code 

5E 
5F 
0A 
5B 
13 
03 
03 
08 
15 
09 



Shift right 
arrow ENTER 

Shift ENTER 
CLEAR 
Shift CLEAR 

5D 
0D 
0D 
0C 
5C 
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A jump to the starting address of the INCH routine is 
always stored in memory at address 8006. The INCH 
subroutine can therefore be called directly either by 
using this address as the instruction operand or by 
equating the name INCH with the address and using INCH 
in the operand field of the instruction. 

We call the routine using the jump subroutine 
instruction JSR which pushes the value of PC onto the 
S-stack and jumps to the called routine. On 
termination, the called subroutine restores the value 
of PC. Therefore, a character may be input as follows: 

JSR INCH 

However, when you actually look for a character using 
INCH there is no guarantee that a key has been pressed. 
INCH returns 0 in A if no key is pressed and also sets 
up the condition code register flags. Remember, the Z 
bit in CC indicates whether the result of the previous 
operation was zero or not so, if CC.Z is set, this 
means that A = 0. The following short loop continually 
calls INCH until a character is actually input. 

GETCH JSR INCH ; Look for a character 
BEQ GETCH ; if none input, keep looking 

The routine INCH does not destroy any register contents 
apart, obviously, from A and CC. If the value of CC is 
precious and must be preserved, it must be saved before 
calling INCH and restored after the return from the 
subroutine. For example: 

PSHS CC ; Save CC on S-stack 
GETCH JSR INCH ; get a character 

BEQ GETCH 
PULS CC ; Restore CC 

Normally, it is not necessary to save and restore CC as 
it should not be used to hold permanent information. 

INCH's complement, a character output routine, is 
accessed via address 800C and the name OUTCH may be 
equated with this address. As well as actually printing 
the character on the screen, OUTCH also moves the 
cursor one space when a character is printed and 
handles the control characters 'Backspace', 'Return', 
etc. 

To output a character, that character should be 
placed in the A register and OUTCH called. The value 
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of the condition code register is lost when OUTCH is 
called but the values of all other registers, including 
the A register, are not affected. 

The use of OUTCH is illustrated by the following 
example which outputs a '*' at the current cursor 
position. 

LDA #'* ; A = ASC("*") 
JSR OUTCH ; Output character 

Using these simple character input and output routines, 
we may now write an assembly language program which 
reads characters from the keyboard and prints them on 
the display. Assume that the read/print sequence halts 
when the BREAK key is pressed. 

LDA #$03 
STA BREAK ; Set location BREAK to 

* BREAK key input code 
GETCH JSR INCH 

BEQ GETCH ; Get a character 
CMPA BREAK ; Is it BREAK 
BEQ DONE ; If so, finish with no print 
JSR OUTCH ; Print the character 
BRA GETCH ; Get next character 

DONE .... 

The final example in this introduction to assembly 
language input and output reads 10 characters into a 
memory area then prints them in reverse order. Notice 
how auto increment and decrement of the X register is 
used in this sequence. 

CLRB ; B is counter register 
LDX #CHARS ; Set up address of memory area 

GETCH JSR INCH 
BEQ GETCH ; Get a character 
STA ,X+ ; Store it and increment X 
INCB ; Add 1 to counter 
CMPB #10 ; If counter <= 10 then 
BLS GETCH ; get next character 

* Now all characters are input and the address in X is 
* one greater than the address of the last character 
* in the sequence 
* Count downwards to output them in reverse order 

DECB ; Reset B to correct number 
COUT LDA ,-X ; Decrement X 
* and fetch character to A 

JSR OUTCH ; Print it 
DECB ; One off counter 
BNE COUT ; If counter <> 0 goto OUTCH 
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5.6 SUBROUTINES 

A subroutine is a self-contained section of code which, 
usually, is set up to implement a particular function. 
Subroutines may be called from within a program. They 
carry out their specified function and control then 
return to the statement following their call. 

Subroutines are a very important programming 
construct and the assembly language programmer has 
great flexibility in how he defines and uses 
subroutines. In fact, much of the next chapter is 
dedicated to this topic and we confine our description 
here to an explanation of how BASIC'S GOSUB command may 
be implemented. 

In BASIC, when we set up or declare a subroutine, we 
assign it a line number which is out of sequence with 
the numbers in the rest of our program. To call the 
subroutine, we set up the values which it needs in 
program variables and then execute a GOSUB <line 
number> instruction. This transfers control to the 
subroutine until a RETURN statement is executed when 
control returns to the calling program. 

For example, the following BASIC sequence calls a 
subroutine to check if a number is an odd number less 
than 20. If so, the subroutine converts it to another 
number by adding 20 to it. Otherwise, it returns the 
number unchanged. The subroutine expects its input to 
be stored in the variable INN and returns its output in 
the variable OUTN. 

100 INPUT INN 
110 GOSUB 1000 
120 PRINT OUTN 
130 .... 
1000 RM = INN - (INT(INN/2)*2) 
1010 IF INN < 20 AND RM = 0 THEN 1040 
1020 OUTN = INN 
1030 GOTO 1050 
1040 OUTN = INN + 20 
1050 RETURN 

When using subroutines in assembly code, we may either 
use the BSR instruction or the JSR instruction. The 
BSR instruction is like the unconditional branch 
instruction BRA, but as well as branching it saves the 
value of PC on the S-stack. The JSR instruction is 
used when we have subroutines set up at known addresses 
or when it is necessary to use indirect addressing to 
call the subroutine. 

Consider how the above BASIC code might be 
translated to assembly language. As we haven't yet 
covered the input and output of numbers, let us assume 
that there exists a subroutine GETNUM which inputs a 
number to the A register and a corresponding routine 
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PUTNUM which outputs the A register, as a number, to 
the screen. 

JSR GETNUM ; INPUT A 
STA INN ; INN = A 
BSR CONVON ; To convert number 
LDA OUTN 
JSR PUTNUM ; PRINT A 

* CONVON - Add 20 to odd numbers < 20 

CONVON LDA INN 
CMPA #20 
BHI EXIT ; If INN > 20 then goto EXIT 
BITA #$01 ; Test bottom bit of A 

* If it is 0, number is even 
BEQ EXIT 
ADDA #20 ; Add 20 to number 

EXIT STA OUTN ; and store in OUTN 
RTS ; return to calling code 

The RTS instruction is used to return control to the 
instruction which immediately follows the subroutine 
call. As CONVON is called above, the first load 
instruction LDA INN is redundant as INN is already held 
in register A. However, we don't optimise this by 
removing the load instruction as the subroutine 
specification does not require the programmer to store 
INN in register A before the subroutine call. 

Notice also that the subroutine alters the value of 
register A. In general, subroutines should leave the 
states of registers exactly as they were when the 
subroutine was called. Therefore, all subroutines 
ought to have the following structure. 

Save registers used by subroutine on stack 
Subroutine code 
Restore register values from stack 
Return 

The subroutine CONVON may be adapted to reflect this 
structure: 

CONVON PSHS A,CC ; Save A and CC on stack. 
LDA INN 
CMPA #20 
BHI EXIT 
BITA #$01 
BEQ EXIT 
ADDA #20 

EXIT STA OUTN 
PULS A,CC,PC ; Restore and return 

All the RTS instruction does is to pull PC from the S-
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stack so it can be left out if PC is pulled explicitly 
when the saved registers are restored from the stack. 

This mechanism of passing parameters to and from a 
subroutine in fixed memory locations is not ideal. We 
shall describe its deficiencies and introduce better 
parameter passing conventions in the following chapter. 

5.7 ARRAYS 

Arrays are one of the most commonly used data 
structures where a sequence of storage elements is 
given a name and particular elements in that sequence 
are accessed by number. In this section, we show how 
arrays of numbers may be stored and accessed using 
assembly language. 

In BASIC, the programmer may use one-dimensional 
arrays which are made up of a linear sequence of 
numbers or two-dimensional arrays which, conceptually, 
may be considered as a table or matrix of numbers. In 
fact, two-dimensional arrays are also stored in the 
computer's memory as a linear sequence and the BASIC 
system provides routines to map a row/column pair 
(l,m), say, to the appropriate address n in the linear 
sequence. Two possible mappings which may be used by 
the assembly language programmer are described later in 
this section. 

When using one-dimensional arrays in assembly 
language, you must know the address of the first 
element in the array. You get this by associating a 
label with a 'reserve store' directive as described in 
section 4.3. This label identifies the so-called 'base 
address' of the array. We assume, in the remainder of 
this section, that NARR is the base address of a one-
dimensional array of 8-bit numbers and that MATRIX is 
the base address of a two-dimensional numeric array. 

These may be set up using assembler directives as 
follows: 

NARR RMB 15 
MATRIX RMB 100 

The index registers X and Y are the mechanism through 
which consecutive array elements may be accessed. The 
base address of the array is loaded into one of these 
index registers and the auto increment/decrement 
facilities used to sequence through the array. For 
example, say NARR is made up of 15 8-bit values and you 
want to set all elements to 0. In BASIC, you would 
write: 

100 FOR I = 1 TO 15 DO 
110 NARR(I) = 0 
120 NEXT I 
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Exactly the same assignments may be specified in 
assembly language but there is no need for an explicit 
counter variable. 

LDX #NARR ; Put array base address in X 
SET0 CLR ,X+ ; NARR(X) = 0 : X = X + 1 

CMPX #NARR+15 ; Compare X to base address+15. 
* see if all elements cleared 

BLS SET0 ; If not, goto SET0 
* to clear next element 

The availability of index registers makes array element 
access a very efficient operation. Even when auto 
increment or decrement cannot be used to update the 
index register, because the step is not one or two, the 
LEA instruction may be used to perform arithmetic on 
the index register. 

For example, say the following BASIC code is to be 
implemented in assembly language: 

100 FOR I=3 STEP 3 to 15 
110 NARR(I) = NARR(I - 1) + 1 
120 NEXT I 

Using assembly language, there is again no need for an 
explicit array index variable: 

LDX #NARR + 2 ; X = base of NARR + 2 
* As NARR+0 is first element 
* this refers to 3rd element 
SETVAL LDA ,-X ; A = Previous element 

INCA ; A = A + 1 
LEAX 1,X ; X = X + 1 to get back to 

* address to be assigned 
STA ,X ; NARR(X) = NARR(X-1) + 1 
LEAX 3,X ; X = X + 3 
CMPX #NARR + 15 ; Are we finished? 
BLS SETVAL ; If not, back to SETVAL 

The use of index registers to hold the address of the 
array element to be accessed is easy to implement for 
one-dimensional arrays. However, when two-dimensional 
arrays are used, the programmer must devise a way of 
storing the array as a linear sequence and must invent 
a mapping to convert a row/column address to an address 
in that sequence. There are two techniques which are 
commonly used for this conversion. 

The first of these techniques stores the entire 
array, row by row, in contiguous memory locations. So, 
if an array is declared in BASIC as MATRIX(10,10) this 
takes up 100 memory elements. The first 10 elements 
are row 1, written as MATRIX(1,*), the next 10 are row 
10, MATRIX(2,*), etc. The position of an element in 
row m say is found by finding where row m starts then 
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adding the column displacement to it. 
The starting position of a particular row, the row 

base, is computed by multiplying the row number by the 
length of the row. As the row base of the very first 
row is the same as the array base address, we count row 
numbers from 0. Therefore, to find the row base of the 
sixth row, we actually multiply the row length by five. 
For example, MATRIX(6,*) would have a row base address 
of MATRIX + 50 (5 * row length) and the element 
MATRIX(6,8) has the address MATRIX + 5 0 + 8 . 

An alternative storage technique for two-dimensional 
arrays does not require array rows to be stored 
consecutively nor does it require a multiplication to 
compute the row base address. Rather, the row base 
addresses are all stored separately in another array 
called an Iliffe vector, named after J. Iliffe, the 
inventor of the mapping technique. This is best 
illustrated diagrammatically as shown in Figure 5.1. 

Fig. 5.1 Using Iliffe Vectors to implement 2-D arrays 

To find out the row base address, the row number is 
used as an index into this Iliffe vector and the 
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starting address of the row is returned. The column 
number is then added to this to compute the actual 
element address. The base address of the array is not, 
in this case, the address of the very first array row 
but is the address of the first element in the Iliffe 
vector. 

The main disadvantage of using Iliffe vectors is, 
obviously, the fact that the Iliffe vector itself takes 
up precious memory locations. However, the flexibility 
which it affords inasmuch as all array rows need not be 
in contiguous storage elements and the fact that a 
multiplication is avoided in the address computation 
often outweighs this disadvantage. 

Both of these techniques of array storage are 
illustrated below with assembly language versions of 
the following BASIC code. 

10 DIM MATRIX(10,10) 
100 INPUT M 
110 FOR J = 1 TO 10 
120 MATRIX(M,N) = 0 
130 NEXT J 

When MATRIX is stored row by row in a linear sequence, 
the above BASIC may be implemented in assembly code as 
follows. Assume that the subroutine GETNUM inputs a 
number to the A register. 

JSR GETNUM ; INPUT M 
* That is, get row number into A 

DECA ; Subtract 1 as count from 0 
LDB #10 ; This is the row length 
MUL ; D = A * B ie 10*(M-1) 
ADDD #MATRIX ; Add the matrix base address 
TFR D,X ; Set up index register X 
LDA #10 ; Use A to count assignments 

NEXT CLR ,X+ ; Zero element: X = X + 1 
DECA ; A is counter register 
BNE NEXT ; If A <> 0 goto NEXT 

When the two-dimensional array is represented using an 
Iliffe vector, the array base MATRIX holds the address 
of the first element of that vector. 

JSR GETNUM ; A = row number 
DECA ; Get displacement from array base 
LDX #MATRIX ; Put base address in X 
LDX A,X ; Index to load X with the row base 

* taken from the Iliffe vector 
LDA #10 ; A is counter 

NEXT CLR ,X+ ; Set element to zero 
DECA 
BNE NEXT ; If all elements not cleared 

* go back to clear next element 
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Notice, from this example, how the powerful indexed 
addressing features of the M6809 makes the computation 
of the row base very efficient indeed. In fact, both 
techniques of two-dimensional array implementation are 
efficient on the M6809. 

5.8 A MACHINE CODE MONITOR 

Rather than present a number of small examples of 
working assembly code programs, we have chosen to 
illustrate the principles described in this chapter 
with a single, substantial assembly code program. 
However, we have written this program in a structured 
way so that it is made up of a number of easily 
understood routines. 

The reason for adopting this approach is that we 
want to present a program which is of use to the novice 
assembly code programmer and which can help him debug 
his own programs. The program below is a so-called 
'monitor' which provides facilities for the user to 
examine the contents of specified memory addresses and 
to change them by typing the revised value. 

The monitor issues a prompt to the user and responds 
to two commands: 

(1) J - this means jump to the start of the user pro­
gram. 

(2) M <address> - this displays the contents of the 
specified address. 

Once an M command has been issued, the user may examine 
subsequent addresses by typing any letter and may 
examine the previous address by typing an 'up arrow' 
character. If the user types a value made up of three 
decimal digits or two hexadecimal digits preceded by a 
'$' sign, this value is filled in to the current 
address. 

To return to the program which called the monitor, 
you must type a 'BREAK' character. A number is 
normally terminated with an 'ENTER' character but can 
be terminated early with any other character in which 
case, the change is ignored. 

The sequence below is an example of a possible 
dialogue with the monitor. User input is underlined. 

*M $1000 
$1000 000 $00 255 
$1001 001 $01 $FF 
$1002 128 $80 2[ENTER] 
$1003 016 $10 [up arrow] 
$1002 002 $02 $A+ 
$1003 016 $10 [up arrow] 
$1002 002 $02 [BREAK] 



112 

The monitor program itself now follows. Do not worry if 
you cannot understand it completely on your first 
reading. You may find it helpful to read Chapter 6 and 
then come back to this program for further study. 

* MONITOR - memory examine and change system 
* 
* This program is intended to help with the 
* development and debugging of assembly language 
* programs. It provides facilities for the 
* user to input a memory address and display its 
* contents. These contents may then be modified 
* by the user. 

* Unless otherwise specified, all routines preserve 
* all register values except CC and any registers used 
* for returning results. 

ORG 20001 
LBRA DRAMON ; Entry point of the monitor 

INTRO FCC "DRAGON MONITOR 1.0" 
FCB 0 ; Terminator for string 

CR EQU $0D 
QMARK EQU $3F 
UPAROW EQU $5E 
BREAK EQU $03 
DOLLCH EQU $24 
STAR EQU $2A 
CBLINK EQU $8009 ; Cursor blink routine 
INCH EQU $8006 ; Keyboard input routine 
OUTCH EQU $800C ; Output character routine 

* INECHO - read a character and echo it to screen 

* Register inputs NONE 
* Register outputs A - contains character input 
INECHO PSHS X,B ; Save registers affected 
INLOOP JSR CBLINK ; Blink the cursor 

JSR INCH ; Scan the keyboard 
BEQ INLOOP ; and wait for a character 
JSR OUTCH ; Echo the character 
PULS X,B,PC ; Restore registers and return 

* OUTSTR - print string of characters 
* 
* Register inputs X - pointer to beginning of string 
* Registers destroyed X,A 
* 
* String must be terminated with a null byte 
* 
OUTSTR LDA 0,X+ ; Get character from string 

BEQ ENDSTR ; Terminated by a zero byte 
JSR OUTCH ; Output the character 
BRA OUTSTR ; and deal with the next one 

ENDSTR RTS 
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* OUTCR - output a carriage return 

* Register inputs NONE 

OUTCR PSHS A ; Preserve A 
LDA #CR ; Load Carriage Return code 
JSR OUTCH ; and send it 
PULS A,PC ; Restore and return 

* OUTSP - output a space 

* Register inputs NONE 
* 
OUTSP PSHS A 

LDA #$20 ; Code for space 
JSR OUTCH ; and output it 
PULS A,PC 

* READY - Prompt user for new command 
* 
* Register inputs NONE 
* 
READY PSHS A 

BSR OUTCR ; Take a new line 
LDA #STAR ; before outputting 
JSR OUTCH ; prompt character 
PULS A,PC 

* 
* DOLLAR - prompt for hexadecimal value 
* 
* Register inputs NONE 
* 
DOLLAR PSHS A 

BSR OUTSP 
LDA #DOLLCH ; Hexadecimal prompt 
JSR OUTCH 
PULS A,PC 

* 
* INHEXD - input a hexadecimal value 
* 
* Register inputs NONE 
* Register outputs A - if valid hex char then hex 
* value else character 
* CC.V = 0 if valid hex character 
* = 1 if non-hex character 

INHEXD BSR INECHO ; Read a character 
CMPA #'0 ; and check the range 
BLO INHERR ; for "0" to "9" 
CMPA #'9 
BLS CHOSUB ; and convert if so 
CMPA #'A ; Could be "A" to "F" 
BLO INHERR 
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CMPA #'F 
BHI INHERR 
SUBA #7 ; Make "A" to "F" follow "9" 

CHOSUB SUBA #'0 ; Convert to numeric value 
ANDCC #$FD ; Valid return 
BRA INHXIT 

INHERR ORCC #2 ; Error return, V bit set 
INHXIT RTS 

* OUTHXD - Output hex digit as character 

* Register inputs A - hexadecimal value 

OUTHXD ANDA #$F ; Mask off MS 4 bits 
CMPA #9 ; Check for decimal digit 
BLS ADDCHO 
ADDA #1 ; A to F offset 

ADDCHO ADDA #'0 ; Convert to character 
JSR OUTCH ; and output it 
RTS 

* INDECD - input decimal digit and convert to value 
* 
* Register inputs NONE 
* Register outputs A - decimal value if in range 0-9 
* - character if non-decimal 
* CC.V - 0 if valid input 
* =1 otherwise 
* 
INDECD BSR INECHO 

CMPA #'0 
BLO INDERR 
CMPA #'9 
BHI INDERR 
SUBA #'0 ; Converts to numeric value 
ANDCC #$FD 
BRA INDXIT 

INDERR ORCC #2 
INDXIT RTS 

* OUTDCD - output decimal digit as character 
* 
* Register inputs A - decimal value 

OUTDCD ANDA #$F 
ADDA #'0 
JSR OUTCH 
RTS 

* HCNVAB - combine hex digits into single byte 
* 
* Register inputs A - new hex digit 
* B - existing hex digit 
* Register outputs B - new hex value = B*16+A 
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* 
HCNVAB STA 0,-S ; Save for later 

ASLB ; Move LS 4 bits 
ASLB ; of B 
ASLB ; to the 
ASLB ; MS 4 bits 
ADDB 0,S+ ; Add in new hex digit 
RTS 

* 
* INHEXB - input a hexadecimal byte 
* 
* Register inputs NONE 
* Register outputs A - hex byte value 
* CC.C = 0 means value is OK 
* CC.V = 0 means that B contains last 
* hex value input 
* CC.V = 1 means hex byte terminated 
* prematurely and B holds 
* character read in. 
* 
INHEXB CLRB ; Initialise to 0 

BSR INHEXD ; Read a hex digit? 
BVS NONHEX 
BSR HCNVAB ; yes, so add to byte 
BSR INHEXD ; Second hex digit? 
BVS NONHEX 
BSR HCNVAB ; yes, so add that also 

NONHEX ANDCC #$FE ; Indicate OK 
EXG A,B ; Return with A and B set up 
RTS 

* OUTHXB - output a hex byte as characters 

* Register inputs A - contains byte value 
* 
OUTHXB PSHS A 

LSRA ; Shift MS 4 bits 
LSRA ; to LS 4 bits 
LSRA 
LSRA 
BSR OUTHXD ; and output the hex digit 
LDA 0,S ; Get original again 
BSR OUTHXD ; MS 4 bits masked off by OUTHXD 
PULS A,PC ; Return intact 

* 
* MULB10 - multiply by 10 
* 
* Register inputs B - value to be multiplied 
* Register outputs B = B*10 
* CC.C = 0 means result between 0-255 
* =1 result out of range 
* 
MULB10 CLR 0,-S ; Create temp on stack 

ASLB ; Evaluate 2*B 
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BCS MULXIT ; Too big? 
STB 0,S ; Save as temp result 
ASLB ; Evaluate 4*B 
BCS MULXIT ; Too big? 
ASLB ; Evaluate 8*B 
BCS MULXIT ; Too big? 
ADDB 0,S ; Evaluate (2*B)+(8*B) 

* If this is too big a result C will be set 
MULXIT LEAS 1,S ; Release temp. 

RTS 
* 
* DCNVAB - combine decimal values 
* 
* Register inputs A - new decimal digit 
* B - old decimal value 
* Register outputs B - result = B*10 + A 
* CC.C = 0 - result in range 0-255 
* = 1 - result out of range 
* 
DCNVAB PSHS A ; Save register 

BSR MULB10 ; B:=B*10 
BCS DCNXIT ; Too big? 
ADDB 0,S ; B:=(B*10)+A 

DCNXIT PULS A,PC ; Restore and RTS 
* 
* INDECB - Input decimal byte value 
* 
* Register inputs NONE 
* Register outputs A - input value if valid 
* CC.C = 0 value in range 0-255 
* =1 value out of range 
* If CC.V = 1 then number terminated early so must 
* be in range 0-255. B holds last converted digit 
* of all 3 typed otherwise set to terminator. 
* 
INDECB CLRB ; Initialise byte 

BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big? 
BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big? 
BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big, so leave C set 

NONDEC ANDCC #$FE ; Result is in range 0 - 255 
IDBXIT EXG A,B ; Return registers 

RTS 

* OUTDCB - output byte as 3 digit decimal value 
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* Register inputs A - contains byte to be output 
* 
OUTDCB PSHS D ; Both A and B used 

TFR A,B ; A is to be used in sub. 
CLRA ; Clear the 100s digit 

NXTHUN CMPB #100 ; Any 100s? 
BLO TRYTEN 
INCA ; yes, so update digit 
SUBB #100 ; Subtract a 100 
BRA NXTHUN ; and try again 

TRYTEN BSR OUTDCD ; Output the 100s digit 
CLRA ; Set up for 10s 

NXTTEN CMPB #10 ; Any 10s 
BLO TRYONE 
INCA ; yes, so update 10 digit 
SUBB #10 ; Subtract 10 
BRA NXTTEN ; and try again 

TRYONE LBSR OUTDCD ; Output 10s digit 
CLRA ; Now count the 1's 

NXTONE CMPB #1 ; Any 1's 
BLO OUTONE 
INCA ; yes, update 1's digit 
DECB ; Subtract 1 
BRA NXTONE ; and try once more 

OUTONE LBSR OUTDCD ; Final digit 
PULS D,PC ; Restore and return 

* 
* HCONVX - Add hexadecimal digit to X 
* 
* Register inputs A - new hex digit 
* X - old hex value 
* Register outputs X = X*16 + A 
* 
HCONVX STA 0,-S ; Save away for later use 

EXG X,D ; So we can do arithmetic 
ASLB ; This performs an ASL 
ROLA ; on the D register 
ASLB 
ROLA 
ASLB 
ROLA 
ASLB 
ROLA ; Have now space in LS 4 bits 
ADDB 0,S+ ; To add in new hex digit 
EXG D,X ; Restore D and return X 
RTS 

* 
* INHEXW - input hex word (address) 
* May be up to 4 hex digits 
* 
* Register inputs NONE 
* Register outputs X - hex address value 
* CC.V = 1 address terminated 
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* CC.V = 0 full 4-digit address 
* read in 
* CC.C = 0 value in range O-FFFF 
* 
INHEXW PSHS D ; Save from harm 

LDX #0 ; Initialise address 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 

NONHW ANDCC #$FE ; Result valid 
PULS D,PC ; Restore and return 

¥ 

* OUTHXW - output hex word as 4 hex digits 

* Register inputs X - value to be output 
* 
OUTHXW PSHS D 

TFR X,D ; D := hex word 
LBSR OUTHXB ; Output MS byte first (A) 
TFR B,A 
LBSR OUTHXB ; followed by LS byte (B) 
PULS D,PC 

* MCOMND - memory examine and change 
* 
* Register inputs NONE 
* Registers destroyed X, A, CC 
* 
* Interprets user commands as defined in introduction 
MCOMND LBSR DOLLAR ; Prompt for hexadecimal 

BSR INHEXW ; Expecting an address (hex) 
EXAMIN LBSR OUTCR ; Prefix the address 

LBSR DOLLAR ; with a "$" 
BSR OUTHXW ; followed by the address 
LBSR OUTSP ; separate by a space 
LDA 0,X ; Get contents of that address 
LBSR OUTDCB ; Shown as decimal value 
LBSR DOLLAR ; and followed by the 
LBSR OUTHXB ; hexadecimal value 
LBSR OUTSP ; Then a space 
LBSR INDECB ; Assume decimal change 
BCS QUERY ; Too big a number? 
BVC CHANGE ; If OK just change the byte 

* A non-digit has been typed, check for hex prefix 
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CMPB #DOLLCH ; Hex number? 
BNE CHKCR 
LBSR INHEXB ; yes, so get the rest 
BVC CHANGE ; If OK just change the byte 

* At this point an early end to the number has 
* been typed. Only CR (ENTER) will be allowed. 
* Note: If only a CR is typed then the byte is 
* cleared to zero!. Be careful! 
CHKCR CMPB #CR ; CR (ENTER)? 

BEQ CHANGE ; yes, then change the byte 
* Check for the "up arrow" key since this 
* returns to the previous location. 

CMPB #UPAROW ; "up arrow"? 
BEQ LSTLOC ; yes, move back to last 

* Now check for the BREAK key since this exits 
* the Monitor 

CMPB #BREAK ; BREAK in? 
BEQ MCDXIT ; yes, then exit 

NXTLOC LEAX 1,X ; Move location address on 
BRA EXAMIN ; and repeat 

LSTLOC LEAX -1,X ; Back up location address 
BRA EXAMIN ; and repeat 

CHANGE STA 0,X ; Make the change 
CMPA 0,X ; and check afterwards 
BEQ NXTLOC ; OK?, move on if so 

QUERY LDA #QMARK ; Made a mistake. 
JSR OUTCH ; so report it. 
BRA EXAMIN ; Don't do anything untoward 

MCDXIT RTS ; Return 
* 
* JCMND - jump to start of program 
* 
* Register inputs NONE 
* 
JCOMND LBSR DOLLAR ; Put out $ prompt 

LBSR INHEXW ; Get hex address 
BVS JERR ; MUST be all 4 hex digits 
JMP 0,X 

JERR RTS ; Only get here on error 
* 
* DRAMON - main driving routine 
* 
* Register inputs NONE 
* Registers destroyed X, A, B, CC 

DRAMON LBSR OUTCR ; Prompt on a new line 
LEAX INTRO,PCR ; Output intro. 
LBSR OUTSTR 

NXTCMD LBSR READY ; Prompt the user 
LBSR INECHO ; Read the command 
CMPA #'M ; Memory examine and change? 
BNE TRYJ 
BSR MCOMND ; yes, then obey it 
BRA NXTCMD ; and repeat 
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TRYJ CMPA #'J ; Is it the Jump command? 
BNE TRYBRK ; no, then check for BREAK 
BSR JCOMND ; yes, so obey it 
BRA NXTCMD ; but don't expect to get here 

TRYBRK CMPA #BREAK ; Is it the BREAK key? 
BNE NXTCMD ; no, then prompt again 
RTS ; yes, return to caller 



Chapter 6 

Subroutines and strings 

When we try to solve a problem, we do not go directly 
from the general statement of the problem to a detailed 
solution unless the problem is very trivial indeed. 
Rather, we split the problem into a sequence of sub-
problems and work out the individual solutions to these 
smaller problems. The sub-problem solutions are then 
integrated and coordinated to form the general problem 
solution. 

When a problem is intended for computer solution, we 
can use exactly the same approach. The overall problem 
solution is a computer program but, rather than 
generate this as a monolithic code sequence, it can be 
made up of calls to subroutines. Each subroutine is 
the solution to a particular sub-problem. By adopting 
this approach, we reduce the overall complexity of the 
program because we never have to understand or think 
about any more than one subroutine at any one time. 

The idea of a subroutine as a self-contained section 
of code which can be initiated from elsewhere in the 
program was one of the earliest advances in computer 
programming. Subroutines are an essential tool for the 
programmer as they allow him to create 'black boxes' 
implementing particular functions. Once these have been 
written and tested, the programmer need not be bothered 
how they work as long as he knows their function and 
how to use them. 

To make the most effective use of this problem-
solving method, the programming language which we use 
must allow us to create subroutines which are 
independent of their environment. Unfortunately, BASIC 
subroutines are very primitive indeed and are not truly 
self-contained. Their disadvantages can be summarised 
as follows: 

(1) BASIC subroutines cannot be made independent of 
their environment because the only way of passing 
information to and returning information from a 
subroutine is through its environment. That is, 
program variables must be used to pass informa­
tion to and from the subroutine. This means that 
BASIC subroutine libraries cannot be created be­
cause both the subroutine and the program must 
'agree' on what variables should be used for 
passing input and output parameters. 

121 
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(2) There is no way, in BASIC, for a subroutine to 
have a completely private data area which no 
other subroutine may tamper with. A private or 
local variable area is essential if the 
subroutine is to be self-contained and if the 
programmer is to be sure that a call of the 
routine always does exactly what's expected of 
it. 

(3) The BASIC programmer cannot give his subroutine a 
name which reflects its function. Rather, he 
must refer to it by a meaningless line number. 
When a program has many subroutines, it is 
difficult to discern what operations are 
implemented by a sequence of subroutine calls, 
especially if the program is not properly 
commented. 

The subroutine facilities available to the assembly 
language programmer are actually slightly less 
primitive that BASIC'S subroutine mechanism. At least 
in assembly language, a mnemonic name rather than a 
number can be given to a subroutine. As in BASIC, 
there are no built-in mechanisms for passing 
information to and from a subroutine or for 
establishing local data space. 

However, the flexibility of assembly language 
programming is such that the programmer may establish a 
set of conventions which allow local data areas to be 
created and which allow parameters to be passed to and 
from a subroutine without using global variables. 
These conventions provide a more powerful, effective 
and safer mechanism for using subroutines than that 
available to the BASIC programmer. 

In this chapter we show how the M6809's architecture 
is well suited to the implementation of self-contained 
subroutines and we describe a very general way of 
declaring and calling subroutines. We also describe a 
subroutine calling technique which can be used when 
execution speed is the paramount consideration and we 
explain how to construct subroutines which are position 
independent. The final sections of the chapter discuss 
techniques for representing and manipulating character 
strings and we show how assembly language subroutines 
may be integrated with BASIC programs. 

6.1 ASSEMBLY LANGUAGE SUBROUTINES 

We have already shown in section 5.6 how the BASIC 
GOSUB and RETURN statements can be implemented in 
assembly language using the BSR, JSR, and RTS 
instructions. In that section, we showed how 
parameters could be passed to and from subroutines 
using shared global variables but this is not a 
recommended technique. Furthermore, if it is important 
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to produce very efficient code, using shared variables 
for parameter passing has the additional disadvantage 
that it takes time to set up and access these shared 
variables. 

In many cases, there is no need for separate 
variables to be used for parameter passing. Rather, if 
one or two parameters only are to be passed to and from 
the subroutine, it is often possible to pass their 
values or addresses in registers. This saves both the 
calling program storing register values and the 
subroutine reloading these values into registers. 

The use of registers for parameter passing also has 
the advantage that the parameters do not take up memory 
space and that the impermenent nature of register 
values emphasises that subroutine parameters are 
distinct from other permanent program variables. 

Program 6.1 shows how the A and X registers can be 
used to pass parameters to and from a subroutine. 

* SQUARE - compute square of input parameter 
* 
* Register input A - positive number to be squared 
* Register output X - square of input 
* Method used is to add n to itself n times 

SQUARE PSHS B ; Save B register 
TFR A,B ; B = A 
LDX #0 ; Clear X 

SQLOOP ABX ; X = X + B 
DECA ; Use A as counter of the 

* number of adds 
BNE SQLOOP 
TFR B,A ; Restore value of A 
PULS B,PC ; Restore B and return 

Program 6.1 SQUARE - compute square of input 

Notice that a return from subroutine instruction, RTS, 
is not required as the program counter is explicitly 
restored using a PULS instruction. 

To call this subroutine, the input parameter must be 
set up in register A. A possible calling sequence might 
be: 

LDA #28 ; Compute 28 squared 
PSHS X ; Save value of X as it is 

* destroyed by SQUARE 
BSR SQUARE ; Call routine 
STX RESULT ; Store result of call 
PULS X ; Restore X 

Notice how the S-stack is used to save register values 
which are subsequently restored. Of course, the value 
of X before the call of SQUARE is not necessarily 
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precious. If this is the case there is no need to 
save it before the call and restore it after the 
subroutine has been executed. 

Any of the registers A, B, X, Y, or U may be used to 
pass parameters to and from subroutines. However, the 
S register is never used for this purpose because of 
its role as a system stack pointer. As the return 
address, the value of PC when the routine is called, is 
stacked, it is important that the value in S is not 
corrupted otherwise a proper return from the subroutine 
is impossible. 

In some subroutines it is useful to return an error 
indicator specifying whether or not the subroutine has 
succeeded in its task and the best way to do this is to 
make use of the CC register. The programmer may use 
CC.V or CC.C as error indicators or, alternatively, the 
settings of CC.Z and CC.N may indicate that an event 
has or has not occurred. 

We have already seen an example of how this latter 
method can be used to determine if an input routine has 
returned a character. If a character has been input, 
CC.Z is unset otherwise CC.Z is set. Therefore, the 
following code loops until a character is input: 

GETCH JSR INCH ; Call input routine 
BEQ GETCH 

When using the CC register to return results from a 
subroutine, the ANDCC and ORCC instructions may be used 
to set and unset particular bits in that register. 

Using registers for subroutine input and output 
parameters is an efficient parameter passing technique 
which should be used when subroutine calls must be 
executed as quickly as possible. However, this 
technique requires that the programmer knows exactly 
what registers must be set up when the subroutine is 
called and what registers are used by the subroutine to 
return results. Typically, different subroutines have 
different conventions in this respect depending on the 
number and type of input parameters and on whether they 
return one or more results. The programmer must know, 
in detail, the conventions for each subroutine before 
he can make use of it. 

If there are only a few subroutines used in a 
program, it may be fairly easy to memorise such 
details, but in a large program, where there might be 
tens or even hundreds of subroutines, this is not 
possible. Furthermore, the programmer may wish to build 
up a library of useful subroutines to be included in 
his programs as they are required. It is obviously a 
good idea to have all the subroutines in the library 
used in a consistent way so passing parameters in 
registers is not really suitable. 

There are two different general mechanisms which can 
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be devised to support subroutine parameter passing. 
The first technique, which we do not describe in 
detail, is to allocate a specified parameter area for 
each subroutine and store the addresses of the 
parameters in that area. When calling the subroutine, 
this area is set up immediately prior to the subroutine 
call. The address of the parameter area is assigned to 
an agreed register such as the Y register, and indirect 
indexed addressing is used to access the subroutine 
parameters. 

This technique works well in most cases but cannot 
support so-called recursive subroutines. Recursive 
subroutines are subroutines which contain an embedded 
call to themselves. Although this may seem an unusual 
idea to the programmer who has only ever programmed in 
BASIC, recursion is very useful in many situations as 
it allows you to write compact programs which, with 
practice, are easy to understand. Readers who wish to 
experiment with recursive programming should consult 
textbooks which describe data structures such as lists 
and trees to see how recursion is used. 

The second generalised technique of subroutine 
parameter passing can handle recursive routines. It 
makes use of a stack to pass parameters to and return 
results from subroutines. This technique can be 
implemented very efficiently on the M6809 because of 
its built-in stack manipulation instructions. It is 
described in detail below. 

6.1.1 Parameter passing using a stack 
The M6809 processor is designed so that two stacks may 
be used, at the same time, by the assembly language 
programmer. One of these stacks, the hardware or system 
stack, is referenced via the S register and is always 
in existence as it is used to hold the program counter 
when a subroutine is called. The user stack, or U-
stack, is referenced via the U register and may or may 
not be used depending on the application being 
programmed. 

A parameter passing mechanism can be devised which 
uses the S-stack to hold information such as the 
subroutine return address and which uses the U-stack to 
hold subroutine parameters. This works perfectly well 
and is often used. It does, however, require 
considerable housekeeping by the calling and called 
routine to make sure that the stacks are always 
consistent. 

The technique which we describe below uses only a 
single stack, the S-stack, but uses two stack pointer 
registers, S and U. As well as being useful to the 
assembly language programmer, this technique of 
subroutine parameter passing is that used by structured 
high-level languages such as Pascal. 

To understand this parameter passing method, we must 
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introduce the idea of a stack frame. A stack frame is 
a data area which is set up on the stack when a 
subroutine is called. The exact number of bytes making 
up a stack frame depends on the number of subroutine 
parameters, the registers saved by the subroutine and 
the local data space required by the subroutine. 
Figure 6.1 is a diagram of a stack frame in its most 
general form: 

Fig. 6.1 Stack frame organisation 

The saved registers are those registers which are 
modified by the subroutine. The return address is the 
value of PC stacked by the BSR or JSR instruction. 

The subroutine parameter area is set up by the 
calling program with the values of the subroutine input 
parameters and, if a result is returned by the 
subroutine, the calling program reserves a location on 
the stack for it. 

To illustrate how stack frames are used, consider 
the SQUARE subroutine described earlier in this 
chapter. This is a subroutine which we might wish to 
implement as a function which returns the square of its 
parameter. Assuming that we use the stack for 
parameter passing, we would call the function SQUARE 
using the following instruction sequence: 

LEAS -2,S ; Decrement S by 2. 
* As stacks in the M6809 grow downwards 
* this leaves a 2-byte 'hole' in the 
* stack for the result 

LDA N ; A = number to be squared 
PSHS A ; Put parameter onto the stack 
BSR SQUARE ; call SQUARE 

The call of SQUARE pushes PC onto the S-stack. The 
subroutine SQUARE first pushes the registers which it 
uses onto the stack and then sets up a register so that 
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indexed addressing may be used to access the subroutine 
parameters and result. As the X and Y registers are 
often used for array accessing, it is best to use the U 
register as the stack index register set to the base of 
SQUARE'S stack frame. 

Given that the subroutine SQUARE saves the registers 
A, B, X, U, and CC, the stack structure after 
subroutine entry is shown in Figure 6.2. 

Fig. 6.2 Stack structure after entry to SQUARE 

In general, a called routine should save the value 
of the U register then reset it so that it points to 
the current stack frame. It is important to ensure 
that the U register is set to the same relative 
position in the stack frame for every subroutine but 
the particular location chosen does not matter a great 
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deal. In our examples, the U register is set so that 
it refers to the hi-byte of the subroutine return 
address on the stack. 

The U register is assigned after the registers have 
been saved using an LEAU instruction. As S points at 
the top location on the stack, the stack address 
assigned to U is computed using the S register value 
and the number of register bytes stacked. 

The code implementing the subroutine SQUARE is: 

* SQUARE - returns the square of its input 
* 
SQUARE PSHS A,B,U,X,CC 

LEAU 7,S ; set U register 
LDA 2,U ; Get parameter from stack 

* it is immediately below 
* the return address 

TFR A,B ; Use repeated addition to 
LDX #0 ; square N 

SQLOOP ABX ; X = X + B 
DECA ; A counts adds 
BNE SQLOOP 
STX 3,U ; Store result 

* Result is always immediately 
* below parameter on the stack 

PULS A,B,U,X,CC,PC ; Restore and return 

Program 6.2 SQUARE with stack parameter passing 

On return from the subroutine, the S register is set so 
that it points to the subroutine parameter on the 
stack. As this is no longer required, the calling 
program must increment S to discard the parameter or 
parameters. After this modification of S, S then 
refers to the result returned by the subroutine. 

The complete call/return sequence for SQUARE is 
therefore: 

LEAS -2,S ; Space for result 
LDA N 
PSHS A ; parameter onto stack 
BSR SQUARE ; call routine 
LEAS 1,S ; discard parameter 
PULS D ; result in D register 

* for processing, store, etc 

Obviously, if the subroutine does not return a result, 
there is no need to reserve space on the stack for the 
result. It is, therefore, very important that the 
programmer ensures that each subroutine has an 
associated comment at its head which states the size, 
in bytes, and the type of any result. This is 
essential so that the correct call/return sequence may 
be used for that routine. 



129 

In general, the call sequence for a subroutine where 
the stack is used for parameter passing is as follows: 

Reserve space, if necessary, for subroutine result 
Evaluate parameters and store on S-stack 
Call subroutine 
Discard parameters 
Retrieve subroutine result from the stack 

The called routine must have an entry and exit sequence 
as follows: 

Save U register and other registers as necessary 
Set up U as stack frame register 
<Body of subroutine> 
Restore registers including PC 

An important advantage of using this technique of 
parameter passing is that the stack may also be used as 
a local variable area for the called subroutine. These 
local variables are accessed using indexed addressing 
via the U or S registers. 

Rather than allocate specific memory locations as 
private working store for the subroutine, it is 
possible to use stack locations for this purpose. This 
store is allocated dynamically on entry to the 
subroutine and de-allocated on exit from the routine. 
Thus store is only allocated when it is required and 
need not be set aside permanently for subroutine local 
variables. 

Program 6.3 takes an array base address and an array 
length as parameters on the stack and returns the 
maximum and minimum values of that array as results. 
It uses local variables to hold the maximum and minimum 
values which have been determined so far. 

* MAXMIN - determines MAX and MIN array values 
* 
* Results are left on the stack in space left 
* by calling routine. 
* 
MAXMIN PSHS U,A,B 

LEAU 4,S ; U points at return address 
LDA 2,U ; Array length in A 
LDX 3,U ; address in X 
LDB ,X+ ; 1st element in B 
PSHS B 
PSHS B ; Push locals onto stack 

* Both MAX and MIN initially set up 
* to be the value of 1st element 
* MAX=stack(S), MIN=stack(S+1) 

DECA 
BEQ DONE ; If only one element, all done 

MMLOOP LDB ,X+ ; Array element in B 
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CMPB ,S ; Compare with MAX 
BGT NEWMAX ; If greater, re-assign MAX 
CMPB 1,S ; Compare with MIN 
BGT ELOOP ; Value greater, go on to next 
STB 1,S ; Otherwise re-assign MIN 
BRA ELOOP 

NEWMAX STB ,S ; Re-assign MAX 
ELOOP DECA 

BNE MMLOOP 
DONE LDA ,S+ ; Maximum value 

STA 5,U ; into result space 
LDA ,S+ ; Minimum value 
STA 6,U ; into result space 

PULS U,A,B,PC ; Restore and return 

Program 6.3 MAXMIN - find maximum and minimum of 
array 

This technique of local variable allocation allows 
recursive subroutines, subroutines which call 
themselves, to be implemented. When a subroutine calls 
itself, a completely new local variable area is set up 
on the stack and the data area of the calling routine 
is not destroyed. 

We illustrate this using a recursive routine which, 
given an input parameter N, returns the Nth Fibonacci 
number. Fibonacci numbers are numbers in a sequence 
where the value of a given number is computed by adding 
the previous two numbers in the list. The first values 
in the sequence are 0 and 1 so the first 10 Fibonacci 
numbers are: 

0 1 1 2 3 5 8 13 21 34 

Fibonacci numbers are not just mathematical oddities 
but have practical uses in sorting large data files 
held on magnetic tape. Readers interested in how they 
are used should consult a textbook on sorting 
techniques. 

A general formula for computing the Nth Fibonacci 
number is recursive: 

if N = 1 then 
FIB(N) = 0 

else 
if N = 2 then 

FIB(N) = 1 
else 

FIB(N) = FIB(N-1) + FIB(N-2) 

So, if the 5th Fibonacci number is required, this 
formula would be evaluated as follows: 

FIB(5) = FIB(4) + FIB(3) 
= FIB(3) + FIB(2) + FIB(2) + FIB(l) 
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= FIB(2) + FIB(l) + 1 + 1 + 0 
= 1 + 0 + 1 + 1 + 0 
= 3 

The assembly code routine below takes an 8-bit input 
parameter N and returns a 16-bit result which is the 
Nth Fibonacci number. As BASIC does not support 
recursion, we cannot first translate our logical 
solution above into BASIC but must go straight to 
assembly code. 

* FIB - Computes Nth Fibonacci number 
* 
* Result left on stack in location P+1 where P 
* is parameter address 
* Set up equates to refer to stack locations 
* 
FRES1 EQU 3 ; Result 
FPAR1 EQU 2 ; Parameter 
FIBL1 EQU -5 ; Local variable 
FIBL2 EQU -7 ; Local variable 

FIB PSHS A,U,CC ; Save registers 
LEAU 4,S ; Set stack frame register 
LEAS -4,S ; Space for local variables 

* FIBL1 and FIBL2 
LDA FPAR1,U ; Get input parameter 
BLE ERR1 ; If it is not positive, error 
CMPA #1 ; is it 1st Fibonacci number? 
BNE FIB2 ; If not, try the second 
LDD #0 ; D = FIB(l) 
BRA EXIT ; Get out of routine 

FIB2 CMPA #2 ; Is FIB(2) required 
BNE FIBN ; No, compute FIB(n) 
LDD #1 ; D = FIB(2) 
BRA EXIT ; Get out 

FIBN LEAS -2,S ; Get stack space for result 
DECA ; FIB(N-1) is being computed 
PSHS A ; Parameter for recursive call 

* of FIB 
BSR FIB ; Call FIB 
LEAS 1,S ; Discard parameter 

* S now refers to result 
PULS D ; Pull result into D 
STD FIBL1,U ; Store D into local variable 

* Now call Fib again to compute FIB(N-2) 
* 

DECA ; A = N - 2 
LEAS -2,S ; space for result 
PSHS A ; stack parameter 
BSR FIB ; and call FIB recursively 
LEAS 1,S ; discard parameter 
PULS A,B ; D = FIB(N-2) 
STD FIBL2,U ; Assign to local 
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* Now add locals to get Fibonacci number 
* 

LDD FIBL2,U 
ADDD FIBL1,U ; D = FIB(N-1)+FIB(N-2) 
BRA EXIT ; get out 

ERR1 LDD #-1 ; D = -1 if error 
EXIT STD FRES1,U ; Store D in result space 

PULS A,U,CC,PC ; Restore and return 

Program 6.4 FIB - compute nth Fibonacci number 

This routine can be optimised by using the space on the 
stack reserved for the result of FIB as local working 
store and by removing some redundant load instructions. 
We leave this optimisation as an exercise for the 
reader. 

You will probably have to think quite hard to 
understand exactly what the FIB program is doing. You 
may find it helpful to draw a diagram of the stack 
structure and see how it expands and contracts as the 
routine is called recursively. Whilst this example 
demonstrates the power of assembly language, it also 
shows that, if you try to do complex things, the code 
to implement them can be difficult to understand! 

The generalised parameter passing and local variable 
allocation techniques which we have described are 
useful when you are writing large programs with many 
subroutines or when you are building a subroutine 
library. For fairly small assembly language programs 
their generality can be confusing and it is better to 
adopt a simpler parameter passing technique. 

However, we do recommend that you should avoid the 
allocation of fixed local variable space for 
subroutines. In many cases, you can use registers as 
local work areas and this is often the most efficient 
approach. In other cases, where this is impossible, 
you should use the stack as a local work area. You may 
either set up the U register as a pointer to this area 
or may use S register relative addressing to access 
local subroutine variables. These techniques are 
illustrated in some of the character string 
manipulation routines which are described later in this 
chapter. 

6.2 CHARACTER STRINGS 

We have described how BASIC arrays can be set up using 
the FCB, FDB, and RMB directives. These arrays can be 
accessed using index registers with the array length 
held in an accumulator register. Naturally, these 
arrays can be arrays of characters and this is one way 
of carrying out character manipulation in assembly 
language. 

However, the use of fixed-length arrays to hold 
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character strings means that the decision as to the 
number of characters in a string must be made when the 
array holding the string is declared. In this respect, 
character arrays are not like BASIC'S character strings 
where the number of characters in a string may vary 
from 0 to 255. When this flexibility is required, it 
is not usual to implement character strings as fixed-
length arrays. 

In this section we describe how the assembly 
language programmer may set up variable-length 
character strings and we explain how various string 
manipulation operations can be implemented. In section 
6.3 we provide listings of a package of subroutines 
which implement character string operations. 

In order to implement variable-length strings the 
programmer must set aside a large data area for string 
storage where the actual characters making up the 
string are kept. The string name is associated with a 
2-byte area which holds the address of the string 
characters within the string storage area. 

The fundamental operations which are normally 
allowed on character strings are as follows: 

(1) Comparison 
Character strings are compared for equality 

(2) Assignment 
One character string is assigned to another 

(3) Catenation 
Two character strings are put together (catenat­
ed) to form a longer string 

(4) Substring selection 
Part of a character string (a substring) is 
selected 

(5) Length computation 
The number of characters making up a string is 
computed 

There are also other operations which may be carried 
out with character string operands such as determining 
the ASCII value of a particular character and 
converting numeric strings to integers and vice-versa. 

Given that all character strings are to be stored in 
a common string storage area, the first decision that 
the programmer must make is how to represent strings so 
that the length of the string can be determined. All of 
the string operations listed above need to know the 
string length in order to operate correctly. 

Probably the simplest variable-length string 
representation technique is to associate an explicit 
'end-of-string' character with each string. This 
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character is catenated with the characters making up 
the string so that the storage space required for the 
string is the length of the string plus one byte. 
Usually the null byte, hexadecimal 00, is used as the 
string terminator. Therefore the string 'HI THERE' 
would be stored as 'HI THERE<NULL>' . 

There are two advantages of using this technique of 
variable-length string representation. 

(1) There is no limit to the length of the strings 
which may be represented. 

(2) Strings whose length cannot be predicted can be 
stored in this way as the string 
modification (adding the null byte) is carried 
out after the entire string is known. This means 
that the technique is very useful for represent­
ing strings which are input from the keyboard or 
some other device. Obviously, the length of such 
strings is not known in advance. 

The disadvantage of this representation technique is 
that string length determination requires a program to 
explicitly count the string characters until a null 
byte is detected. This takes time and when a program 
does a lot of character manipulation, this time penalty 
may be unacceptable. 

An alternative technique for string representation 
is to hold the length of the string as the very first 
byte of the string. For example, the string 'HI THERE' 
would be stored as <8>HI THERE. This means length 
computation is very fast but has the disadvantages that 
the maximum string length is 255 characters and that 
the length of the string must be known in advance 
before it can be entered in the string store. 

As character strings are represented as a 2-byte 
reference to the string store, the assignment of one 
character string to another is a very efficient 
operation. There is no copying of the string 
characters themselves. Assignment simply involves 
assigning one string reference to another. However, 
this can result in much wasted store. The reason for 
this is best illustrated by an example. 

Assume that the variables STR1, STR2, and STR3 have 
been set up using an FDB directive and have been 
initialised to refer to strings as follows: 

STR1 -> 'HI THERE' 
STR2 -> 'WELCOME' 
STR3 -> 'HELLO' 

If STR1 is assigned to STR2, this means that STR2 now 
points to the string 'HI THERE' and the string 
'WELCOME' is no longer referenced by anything. However, 
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the space occupied in the character store by this 
string cannot magically disappear so, if many string 
assignments are executed, the string store soon fills 
up with such inaccessible 'garbage'. 

This is a general problem which is inherent in all 
systems where variable-length strings are allowed. The 
BASIC programmer has the advantage that the BASIC 
system has an in-built 'garbage collection' routine 
which finds all unreferenced strings in its string 
store and marks the store which they occupy as 
reusable. Garbage collection is a fairly complex 
operation and the interested reader should refer to a 
computer science textbook which covers data structures 
for a description of various garbage collection 
algorithms. 

Rather than discuss garbage collection, we describe 
how routines can be written to allocate and deallocate 
space in the string storage area so that the amount of 
garbage is minimised. The first routine described 
below is called GETSP. This takes one parameter, say 
n, and returns an address in the string storage area of 
n consecutive unused bytes. The second routine below 
is FREESP, which is called after string assignment, to 
mark a group of bytes as being available for re­
allocation. 

Let us assume that the string storage area is called 
HEAP and is set up using the following directive: 

HEAP RMB 4096 ; String storage area 

Furthermore, let us assume that we use an explicit 
length byte at the start of each string. If this byte 
has a value between 0 and 254, this is taken as the 
string length. If the length byte is 255, the 
following two bytes hold a number which is the number 
of unused bytes in that area and therefore available 
for string allocation. 

Figure 6.3 shows part of HEAP with intermingled 
character strings and free space. Initially, HEAP is 
set up so that the very first byte (byte 0) is 255 and 
bytes 1 and 2 hold the 16-bit integer 4096 indicating 
that the entire storage area is available for 
allocation. The routine GETSP starts at the beginning 
of HEAP searching for a byte whose value is 255. When 
such a byte is found, GETSP checks if the number of 
free bytes available is enough to satisfy its request. 

If so, GETSP claims what it needs from this free 
space and marks the remainder as free. If the free 
space is not sufficient, GETSP goes on to find the next 
byte whose value is 255. If no free space is found 
before the end of the string storage area, GETSP 
returns an error indicator showing that it is unable to 
satisfy the request for space. 
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Fig. 6.3 String storage area organisation 

The code for the routines GETSP and FREESP is provided 
in section 6.3. For the moment, let us assume that they 
are available and have the following specifications: 

* GETSP - gets space on heap 
* 
* Register input B - number of bytes required 
* Register outputs Y - pointer to space requested 
* CC.V = 0 if no space available 
* CC.V = 1 if request satisfied 
* 
* FREESP - returns free space to heap 
* 
* Register input X - address of space to be freed 
* Register output CC.V = 0 if invalid address 
* CC.V = 1 if space freed 

Given these routines, the initialisation of strings can 
be implemented as shown below. Assume that a string, 
terminated by a null byte, has been read into an input 
buffer area called INBUF. The routine STINIT takes the 
address of INBUF as its parameter in register X and 
returns in register Y the address of the initialised 
string on the heap. The assembly code for this routine 
is: 

* STINIT - Initialise a string 
* 
* Register input X - input buffer address 
* Register outputs Y - string address in heap 
* CC.V = 0 if error 
* CC.V = 1 if no errors 
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STINIT PSHS X,A,B,PC ; Restore and return 
CLRB ; B is counter 

* holding length of string to be 
* initialised 

TFR X,Y ; Save value of X 
STCNT LDA ,Y+ ; Get string byte 

BEQ FSPCE ; If null byte, stop count 
INCB ; Otherwise, count it 
BRA STCNT 

FSPCE INCB ; To account for length byte 
BSR GETSP ; get space 
BVC XIT ; No space found - error 
DECB ; No of characters in string 
STB ,Y+ ; Store length 
BSR CPSTR ; String copy -see examples 
ORCC #2 ; Set success flag 
LEAY -1,Y ; To point at length byte 

XIT PULS X,A,B ; Restore and return 

Program 6.5 STINIT - string initialisation 

Further examples illustrating string manipulation 
techniques are provided in the following section. 

6.3 STRING MANIPULATION ROUTINES 

This section is entirely taken up with listings of 
routines which carry out string manipulation. All the 
examples here are written in a position-independent way 
and may readily be incorporated with your own programs. 

* CHKHP - check string validity 
* 
* Register input X - string address 
* Register output CC.V = 1 if string in heap 
* CC.V = 0 if not in heap 
* 
CHKHP PSHS X ; Save register 

LEAX HEAP,PCR ; Heap start 
CMPX ,S ; comparison 
BHI HPERR ; Input address <• heap start 
LEAX HEAPEND,X ; Heap end 
CMPX ,S ; comparison 
BLO HPERR ; Input address > heap end 
ORCC #2 ; Set CC.V 
BRA XIT1 

HPERR ANDCC #$FD ; CC.V = 0 
XIT1 PULS X,PC ; Restore and return 

Program 6.6 CHKHP - check string address validity 

* CPSTR - copy string characters 

* Register inputs X - source string address 
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* Y - destination string address 
* B - string length 
* 
CPSTR PSHS X,Y,A,B ; Save registers 

TSTB ; Check for zero length 
CPLOOP BEQ XIT2 ; Check if finished 

LDA ,X+ ; Get character 
STA ,Y+ ; and copy it 
DECB ; B is counter 
BRA CPLOOP 

XIT2 PULS X,Y,A,B,PC ; Restore and return 

Program 6.7 CPSTR - copy characters 

* GETSP - get space for string 
* 
* Register input B - number of bytes required 
* Register output Y - string address 
* CC.V = 0 if request fails 
* CC.V = 1 if request satisfied 
* Uses first-fit algorithm, ie, returns first area 
* large enough to satisfy request. Returns excess 
* space as free if space found > space requested 

GETSP PSHS A,B,X,U ; Save registers 
TFR S,U ; U is pointer to locals 
LEAX HEAPEND,PCR ; 1st local = U-2 
CLRA ; U-4 is 16-bit length 
PSHS X,A,B ; Locals onto stack 
LEAY HEAP,PCR ; Initialise to heap start 

FFREE CMPY -2,U ; At heapend? 
BHS NTFND ; Yes, no space available 
LDA ,Y ; Check if free area 
CMPA #255 ; by comparing with 255 
BEQ SPFND ; If so, space found 
LEAY 1,Y ; Otherwise increment Y 
BRA FFREE ; and keep looking 

SPFND LDD 1,Y ; Pick up free area length 
CMPD -4,U ; Compare with length needed 
BHS LENOK ; We have enough 
LEAY 3,Y ; No, look for next free 
BRA FFREE ; area on heap 

* Now check if too much space. Don't return 
* an extra 1 or 2 bytes as they are unusable 
LENOK LDD -4,U ; Space requested 

ADDD #2 ; If D + 2 >= that available 
CMPD 1,Y ; don't return space 
BHS EXITOK ; and exit 
LDD 1,Y ; get space available 
SUBD -4,U ; subtract space requested 
PSHS A,B ; and save on stack 
LDB -3,U ; B = 8 bit length 
LEAX B,Y ; start of free string 
LDA #255 ; Free indicator 
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STA ,X+ ; and mark byte free 
PULS A,B ; get free string length 
STD ,X ; and store it 
BRA EXITOK ; and exit 

NTFND ANDCC #$FD ; Error indicator 
BRA XIT3 

EXITOK ORCC #2 ; No errors 
XIT3 LEAS -4,S ; Discard local space 

PULS A,B,X,U,PC ; Restore and return 

Program 6.8 GETSP - get string space 

* FREESP - free space on heap 

* Register input X - address of space to be freed 

* Register output CC.V = 1 if space freed 
* CC.V = 0 if invalid input 
* 
FREESP PSHS A,B,X,Y ; Save registers 

BSR CHKHP ; Is input valid? 
BVC EEXIT ; No, error return 
LDB ,X ; String length 
INCB ; To get actual no of bytes 
LDA #255 ; Free space indicator 
STA ,X ; Mark string free 
CLRA ; and store 16-bit 
STD 1,X ; free string length 
LDA #255 ; See if following string 
CMPA B,X ; is free 
BNE LKLAST ; No, try preceding string 
LEAY B,X ; yes, so join strings 
BSR JOIN 

LKLAST TFR X,Y ; Find preceding free string 
FLOOP CMPA ,-X ; Is byte free 

BEQ CHKJN ; Yes, can it be joined 
BSR CHKHP ; At heap start? 
BVC XIT7 ; No preceding free string 
BRA FLOOP 

CHKJN LDD 1,X ; Length of free string 
STD ,--S ; Stack it 
TFR X,D 
ADDD ,S++ ; D = address+length 
PSHS Y 
CMPD ,S++ ; Are strings adjacent 
BNE XIT7 ; No, return 
BSR JOIN ; Yes, join them 

XIT7 ORCC #2 ; Set CC.V 
BRA END7 

EEXIT ANDCC #$FD ; Clear CC.V 
END7 PULS A,B,X,Y,PC 
* 
* JOIN - join adjacent free segments 
* Register inputs X,Y - addresses of areas to be 
* freed 
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JOIN PSHS A,B 
LDD 1,X ; Length of 1st area 
ADDD 1,Y ; Length of 2nd area 
STD 1,X ; Store total 
CLR ,Y ; Get rid of free indicators 
CLR 1,Y 
CLR 2,Y 
PULS A,B,PC 

Program 6.9 FREESP - free string space 

* CMPSTR - compare strings for equality 
* Register input X - string 1 
* Y - string 2 
* Register output CC.Z = 1 if strings equal 
* CC.Z = 0 if not equal 
* 
CMPSTR PSHS A,B,X,Y ; Save registers 

LDA ,X+ ; Length of string 1 
CMPA ,Y+ ; must be same as length 2 
BNE CMPXIT ; If not, exit, CC.Z=0 
TSTA ; Check for 0 length 

CMPLP BEQ CMPXIT ; A = 0, so all done, CC.Z=1 
LDB ,X+ ; Get character 
CMPB ,Y+ ; and compare 
BNE CMPXIT ; Not the same, CC.Z=0 
DECA ; Yes, decrement length 
BRA CMPLP ; and continue comparisons 

CMPXIT PULS X,Y,A,B,PC ; Restore and return 

Program 6.10 CMPSTR - compare strings 

* STRCAT - catenate strings 
* 
* Register inputs X - string 1 
* Y - string 2 
* Register outputs Y - new string 
* CC.V = 1 - no errors 
* CC.V = 0 - error 
* 
STRCAT PSHS X,A,B 

BSR CHKHP ; Check 1st string 
BVC XIT8 ; Invalid, abort 
EXG X,Y 
BSR CHKHP ; Check 2nd string 
BVC XIT8 ; Invalid, abort 
LDB ,Y ; work out length 
ADDB ,X ; of new string 
BVS EEXIT ; Too long(overflow), abort 
CMPB #255 ; 255 also too long 
BEQ EEXIT 
STX ,--S ; Stack string addresses 
STY ,--S 
INCB ; Total space needed incl. 
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BSR GETSP ; length byte. Get space 
BVC XIT8 ; No space, abort 
DECB ; New string length 
STB ,Y+ ; stored as 1st byte 
LDX ,S++ ; Get source address 
LDB ,X+ ; and its length 
BSR CPSTR ; and copy characters 
LEAX -1,X ; Then free space 
BSR FREESP 
LEAY B,Y ; Update destination 
LDX ,S++ ; Get source address 
LDB ,X+ ; and its length 
BSR CPSTR ; and copy characters 
LEAX -1,X ; Then free space 
BSR FREESP 
ORCC #2 ; Set CC.V 
BRA XIT8 

EEXIT ANDCC #$FD ; Error indicator 
XIT8 PULS A,B,X,PC 

Program 6.11 STRCAT - catenate strings 

* SUBSTR - select substring 
* 
* Register inputs X - source string address 
* A - substring length 
* B - offset from string start 
* Register outputs Y - new address or error number 
* CC.V = 1 - no errors 
* CC.V = 0 - error 
* 
SUBSTR PSHS X,A,B ; Save registers 

BSR CHKHP ; Is string valid? 
BVS STROK ; yes, next check 
LDY #0 ; error type indicator 
BRA EEXIT1 ; error exit 

STROK INCB ; To get offset from 1st char. 
LEAY B,X ; Substring address 
PSHS Y ; Stack it 
LDB ,X ; Total string length 
INCB ; To account for length byte 
LEAY B,X ; End of string address 
CMPY ,S ; With substring address 
BLS INDXOK ; If invalid index 
LDY #1 ; Index error = 1 
BRA EEXIT1 

INDXOK LDU ,S ; Substring address 
LEAU A,U ; Add length 
PSHS U ; and stack it 
CMPY ,S++ ; Compare with end of string 
BLS LENOK ; is index + length valid? 
LDY #2 ; No, length too long 
BRA EEXIT1 

LENOK INCA ; To get number of bytes for 
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TFR A,B ; getspace parameter 
BSR GETSP ; Get the space 
BVS GSPOK 
LDY #3 ; No space available error 
BRA EEXIT1 

GSPOK PULS X ; Source address 
DECB ; For string length 
STB ,Y+ ; New string length 
BSR CPSTR ; Now copy characters 
ORCC #2 ; No errors 
BRA XIT5 

EEXIT1 ANDCC #$FD ; Indicate error 
XIT5 PULS X,A,B,PC ; Restore and return 

Program 6.12 SUBSTR - select substring 

6.4 POSITION-INDEPENDENT CODE 

One of the problems which can arise when you try to use 
machine code routines which have been written by other 
people is that these routines make assumptions about 
the contents of particular memory locations which you 
have used for other things. What has happened is that 
the operation of the routines depends on particular 
instructions and/or data residing at fixed addresses 
and, if these instructions/data are not at these 
addresses, the routines will not work. 

Routines like this are called 'position dependent' 
and often cause many problems for the assembly language 
programmer. However, it is possible to write 'position 
independent' code which executes correctly irrespective 
of where it is loaded into the machine memory. If you 
are building a library of subroutines or writing a 
program which may run on other machines, you should 
always write position-independent code. 

Position-independent code (PIC) is code that 
executes in the same way regardless of where it resides 
in memory. In other words, if it is located at a 
different address from that which it was originally 
assembled, it will still execute correctly. To produce 
position-independent code for the Dragon, you must 
adhere to a single fundamental rule: 

All addresses which you use in your program should 
be relative rather than absolute addresses. 

In general, it is best to write your routines so that 
addresses are all relative to PC but it is also 
possible to use the direct addressing mode of the M6809 
in the production of PIC. For the meantime, however, 
we shall concentrate on how to produce PIC by using 
PC-relative addressing. 

We have already seen examples of PC-relative 
addresses as all the M6809 branch instructions refer to 
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the destination address as an offset from the current 
value of the program counter. Therefore, even if the 
code is moved (relocated) to some other address, the 
relative distance between the branch instruction and 
its destination remains the same. However, you cannot 
cheat by adding or removing machine code instructions 
without re-assembly. If you do so, the program will not 
work as the relative distance specified in the branch 
instruction will be incorrect. 

In early microprocessors, the production of PIC was 
often difficult because relative branch instructions 
only allowed an 8-bit offset thus restricting the 
relative branch to the range -128 -> 127. However, no 
such problem exists in the M68C9 as long branch 
instructions allowing offsets from 32767 to -32768 may 
be used. In fact, if you wish to use some of the 
examples discussed in earlier chapters in combination 
with the examples in this chapter, you may have to 
change some of the BSR instructions to LBSR 
instructions as the subroutine code may be located more 
than 127 bytes away from the subroutine call. 

As well as addressing instructions in a position-
independent way, it is also essential that data are 
also addressed using the PC-relative addressing mode. 
Although we introduced this addressing mode in Chapter 
2, our examples so far have mostly used direct, 
extended or indexed addressing. The reason for this is 
that we felt that the introduction of PC-relative 
addressing was peripheral to the concepts illustrated 
in the examples. 

Recall that the M6809's PC-relative addressing mode 
uses the program counter as an index register and adds 
either an 8-bit or a 16-bit offset to it. The table 
below shows examples of how data can be addressed in a 
position-independent way using PC-relative addressing. 
Assume that TABLE, WORD, and DATA are storage locations 
set up using an FCB or RMB assembler directive. 

Non-PIC PIC 

LDX STABLE LEAX TABLE,PCR 

LDX WORD LDX WORD,PCR 

STA DATA STA DATA,PCR 
Notice how easy it is to write code in a position-
independent way. Instead of referring to the absolute 
symbolic address, all you have to do is to tell the 
assembler that PC-relative addressing is to be used. 
The assembler works out the correct displacement from 
the instruction position and generates the appropriate 
postbyte and offset. 

The only instructions which cause any real 
difficulty are those which use 16-bit immediate 
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addressing where the 16-bit value in the instruction 
refers to an absolute address. To load such addresses 
in a position-independent way, the LEA instruction 
rather than the LD instruction is used. Therefore, 
rather than saying LDX STABLE to load the address of 
TABLE into register X, this should be written LEAX 
TABLE,PCR. 

However, other instructions such as CMP which might 
also use immediate values which are addresses do not 
have position-independent forms. This means that when 
a 16-bit register is to be compared with an immediate 
value representing an address, we have to make use of a 
temporary location on the stack. 

For example, consider the following fragment of 
non-PIC code which is often found in programs which 
look up tables of values. 

LDX #TABLE ; Set up base address of table 
LOOP .... 

Code to look 
up table 
CMPX #TABEND ; is table completely scanned 
BNE LOOP 

TABLE FCB <<table data values) 
TABEND EQU * ; table end 

In this example, TABLE and TABEND represent absolute 
addresses and, if relocated without reassembly, this 
code would not execute properly. In order to make this 
code position independent, we must ensure that all 
absolute addresses are eliminated. We do this by using 
the LEA instruction to compute an address and we then 
store this address where it may be accessed and 
compared. We need a temporary location for the 
absolute address and, as always, the best place to 
allocate temporary store is on the stack. 

We might, therefore, write the above example in a 
position independent way as follows. 

LEAX TABEND,PCR 
PSHS X ; Stacks address of TABEND 
LEAX TABLE,PCR 

LOOP .... 

CMPX ,S ; Compare X with top stack 
BNE LOOP 
LEAS 2,S ; Discard top stack element 

In general, when you are writing your own routines you 
should always try and use PC-relative addressing so 
that PIC is generated by the assembler. However, if 
you are making use of routines built into the BASIC 
system, such as the input and output routines INCH and 
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OUTCH described in Chapter 5, PC-relative addressing 
should not be used. 

The reason for this is that these routines always 
reside at fixed locations and if you relocate your own 
program, the system routines do not move with your 
program. Therefore, you should always use jump rather 
than branch instructions to reference these system 
routines. 

For example, to reference the input routine at 
address 8006, you might write the following code: 

INPUT EQU $8006 
• • • • 
JSR INPUT 

It would be quite incorrect to say LBSR INPUT as 
relocating your code would cause the displacement built 
into the branch instruction to be incorrect. 
Naturally, the same applies to memory areas which have 
a dedicated function, such as the BASIC screen area. 
This starts at absolute address 400, so LD rather than 
LEA instructions are used to pick up that address. 

6.4.1 Jump tables 
The only real problem associated with PIC arises when 
some other program is assembled and uses PIC routines. 
Naturally, the addresses of these routines are 
assembled into the program and, if the routines are 
relocated, these addresses will be wrong. After 
relocation, it is necessary to modify the program to 
reflect the new, relocated addresses and this seems to 
negate some of the advantages of producing PIC. 

In order to avoid a great deal of tedious address 
modification, an addressing technique can be used which 
isolates the necessary changes so that only a single 
table need be changed. This technique is based around 
the idea of so-called 'jump tables' or 'vector 
locations' . 

A jump table contains, at known positions, a link to 
the actual addresses of routines and data used by a 
program. If these addresses change, only the jump 
table need be modified to reflect the new addresses. 
There is no need to change the program which refers to 
these addresses through the jump table. 

Where routines are addressed, the jump table is 
usually made up of jump or branch instructions (hence 
the name) which immediately jump to the addressed 
routines. We shall see shortly how such a table, which 
is called a direct jump table, may be set up. 

When data are referenced via a jump table, the table 
locations do not contain instructions but merely hold 
the address of the referenced data. The data item can 
be accessed using indirect addressing. Hence, this 
type of jump table is often termed an indirect jump 
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table. Of course, there is no reason why the data in 
such a table should not be subroutine addresses. The 
actual routines would then be called using a JSR 
instruction with the indirect addressing mode. 

Jump tables are the mechanism which provides access 
to the BASIC I/O routines. In fact, there are two jump 
tables referencing these routines - a direct jump table 
starting at address 8000 and an indirect jump table 
starting at address A000. 

As an example of how these tables can be used, 
consider the character input routine discussed in 
Chapter 5. In the direct jump table, address 8006 
holds a jump to this routine whereas the first location 
in the indirect jump table (A000) is set up with the 
address of the input routine. 

If we wish to use the direct jump table, the 
following instruction is used to call this input 
routine: 

JSR $8006 

On the other hand, if the indirect jump table is used, 
indirect addressing must be used to reference the input 
routine: 

JSR ($A000) 

The jump tables for these BASIC I/O routines are set up 
at known locations but if you envisage that other 
programs will use your routines, it is a 
straightforward matter to set up your own jump tables. 

The skeleton example below shown how direct and 
indirect jump tables may be defined by the assembly 
code programmer. 

SUB1 
<code for subroutine 1> 

SUB2 
<code for subroutine 2> 

SUB3 
<code for subroutine 3> 

* 
* Now set up an origin for the jump table 
* 

ORG $1000 
SUB1V JMP SUB1 
SUB2V JMP SUB2 
SUB3V JMP SUB3 
* 
* If an indirect jump table is required it 
* might be set up as follows: 
* 
SUB1V FDB SUB1 
SUB2V FDB SUB2 
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SUB3V FDB SUB3 

This is a simple way to set up jump tables but the 
disadvantage with this technique is that the addresses 
filled in the jump table are those known when the 
program is assembled. They are called 'static 
addresses'. If the program is relocated, these 
addresses remain as they were and are therefore 
incorrect. What is needed is a technique which 
allocates addresses to a jump table immediately before 
the program runs. That is, the jump table must be set 
up dynamically each time the program is executed. 

To calculate the addresses at run-time requires the 
use of initialisation code which fills in the jump 
table addresses. The following initialisation code 
shows how this can be achieved. 

INIT LEAX SUB1,PCR 
STX SUB1V+1 ; SUB1V+1 because the 

* JMP opcode is at SUB1V 
LEAX SUB2,PCR 
STX SUB2V+1 
LEAX SUB3,PCR 
STX SUB3V+1 

ORG $1000 ; Jump table address 
SUB1V JMP $0000 
SUB2V JMP $0000 
SUB3V JMP $0000 

We leave it as an exercise for the reader to work out 
how to initialise an indirect jump table dynamically. 

Normally, the INIT routine is the very first routine 
in a program as it is essential that its address is 
known in order that it may be called to set up the jump 
table. Placing INIT at this position also means that 
the program can be initiated from BASIC once CLOADMed 
by using the EXEC command. There is no need to specify 
an address for EXEC. 

The use of an initialisation routine opens up the 
possibility of using an alternative technique of 
producing position-independent code. This technique 
relies on all addresses being direct addresses with the 
actual address computed by adding the contents of DP to 
the address specified in the instruction. In other 
words, the instruction address is actually a DP-
relative address. 

In order to produce PIC code using direct 
addressing, DP must be set up dynamically at the start 
of program execution. The INIT routine must search for 
an available page in memory and assign its address to 
the direct page register. You might wish to explore 
the possibilities of this technique but be warned that 
the BASIC system keeps many pages for its own use and 
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assumes that they will not be used by the programmer. 
You have to be very careful about saving and restoring 
the value of the DP register and it is our opinion that 
the use of PC-relative addressing is a better way of 
producing position-independent code. 

6.5 COMBINING ASSEMBLY LANGUAGE WITH BASIC 

A disadvantage of assembly language programming is that 
it is difficult to write and test low-level language 
programs even when strict rules of programming are 
adhered to. This is in contrast to BASIC programs 
which, because of the way in which BASIC is 
implemented, are easy to test. It is simple to print 
out the values of variables as the program executes or 
to break in and inspect variable values that you think 
might be wrong. Ideally, we would like this flexibility 
but with the speed and power of assembly language. 

There is no such ideal system but, in many cases, it 
is possible to call assembly code routines from BASIC 
programs thus using high and low level programming in 
the most productive way. It is a fact that most 
programs spend most of their time executing a 
relatively small proportion of the total program code. 
The speed of BASIC programs can be significantly 
increased by identifying execution-intensive sections 
and replacing these by machine code equivalents. In 
this way, the majority of the program made up of user 
prompts, print statements, etc. can remain in BASIC 
with only time critical sections programmed in assembly 
language. 

The easiest way to incorporate machine code routines 
in a BASIC program is to use BASIC'S EXEC statement. 
The EXEC statement takes an address as a parameter and 
transfers control to the code residing at that address. 
It is used as follows: 

EXEC <address> 

In actual fact, the address operand, which must lie in 
the range 0000 to FFFF, in the EXEC statement is 
optional. If it is present, the machine code routine at 
that address is executed with control returned to BASIC 
after a RTS or PULS PC instruction is executed. If the 
address is omitted, EXEC consults a jump table (the 
EXEC vector) to find the address of the code to be 
executed. 

The EXEC vector is located at address 9D and is made 
up of a single word only. Therefore, the memory 
locations 9D and 9E should contain the address of the 
code to be EXECed. Initially, the EXEC vector is set 
up to contain the address of an error routine which 
explains why the message '?FC ERROR' is output when an 
EXEC without a parameter is used as the first EXEC in a 



149 

program. If an address is specified in an EXEC call, 
that address is filled into the EXEC vector with the 
result that subsequent EXECs without an address 
parameter call the machine code at that address. 

An alternative way to set up the EXEC vector is via 
the CLOADM command. 

CLOADM "Name" 
EXEC 

This instruction sequence sets up the EXEC vector to 
refer to the execution address of the machine code 
program called "Name" which has just been loaded. The 
EXEC instruction then transfers control to this code. 

The main advantage of EXEC is its simplicity and the 
fact that it can be used to invoke any number of 
machine code routines. The main disadvantage with EXEC 
is that any routine parameters must be passed in memory 
locations and the programmer must POKE these parameters 
into known locations before the EXEC call. Similarly, 
the results of executing the machine code routine must 
be in known locations and can only be retrieved using 
PEEK. 

An alternative way to invoke machine code routines, 
which permits parameter passing, is to make use of the 
USR call. The number of USR calls available to the 
BASIC/machine code programmer is restricted to ten and 
these are named USRO to USR9. USR calls do not take an 
explicit address but transfer control to the address 
which the programmer has previously associated with 
that USR call. 

The addresses to which particular USR calls should 
transfer control are set up using a DEF USR statement. 
This has the general form: 

DEF USRn = address 

The number n must be a single digit in the range 0 to 9 
and the address must lie in the range 0 to FFFF. The 
general form of the USR call itself is: 

USRn(<argument>) 

Executing a call of USRn causes control to be 
transferred to the address specified in the 
corresponding DEF USRn statement. Although the 
definition of the USR call function states that the 
name USR should be followed by a single digit from 0 to 
9, readers who try to call USR in this way will find 
that all USR calls actually result in a call to USRO. 
This is due to an error in the BASIC system which, 
fortunately, can be circumvented very easily. 

The bug in the BASIC system causes the interpreter 
to skip the digit so that USRO is taken to be the same 
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as USR1, USR2, etc. As BASIC takes a USR call without 
a parameter to be equivalent to USRO, the effect of the 
bug is to make all USR calls default to USRO. 

Rather than call a USR call as USR1, USR6, USR9, 
etc., the digit indicating which USR call is to be used 
should be padded with an extra zero. Therefore, to 
call USR1, you must actually write USR01, to call USR6, 
you must write USR06, etc. Obviously, this is not 
necessary for USRO but for reasons of consistency it is 
probably better to call this as USR00. 

A USR call from BASIC is treated like a BASIC 
function so that it is used as part of an expression 
and should return a value to the BASIC program. 
Examples of USR calls are: 

10 DEF USRO = &H1000 : DEF USR1 = &H2000 
20 A = USR00(A) : ' Transfers control to &H1000 
30 IF USR01(0) = 0 THEN B = B + 1 

If a USR call is used without first defining the 
address it refer to, the USR call will cause a message 
'?FC ERROR' to be printed. Like the EXEC statement, 
each USR call has an associated vector which contains 
the address of the entry point of the machine code 
routine to be executed. The USR vector is initially set 
up to refer to the error routine which prints the '?FC 
ERROR' message. When a DEF USR statement is used, this 
fills in the address in the appropriate vector. 

The table below lists the vector addresses 
associated with each USR call. 

If you are trying to link machine code and BASIC for 
the first time, we recommend that you experiment with 
the technique by using EXEC rather than USR calls. 
Unfortunately, to set up USR call parameters requires 
knowledge of how BASIC represents numbers and strings. 
We therefore return to the use of USR calls in Chapter 
9 after BASIC'S data representation has been described. 

USR Call 
USRO 
USR1 
USR2 
USR3 
USR4 
USR5 
USR6 
USR7 
USR8 
USR9 

USR Vector 
134:135 
136:137 
138:139 
13A:13B 
13C:13D 
13E:13F 
140:141 
142:143 
144:145 
146:147 



Chapter 7 

Graphics programming 

One of the greatest advantages of assembly code 
programming, its total flexibility, is also one of its 
most serious drawbacks as the programmer has to concern 
himself with every detail of the problem. One area in 
particular where this lack of support is very evident 
is in graphics and animation. 

The problem becomes very obvious if the would-be 
animator has relied on the graphics facilities provided 
in Extended Color BASIC and has come to expect such 
facilities when designing and writing graphics 
programs. However, the major disadvantage of BASIC 
programming is its inherent slowness and it is in 
graphics applications that this is most evident. Only 
the simplest of games, for example, with minimal 
movement can be programmed in BASIC if they are to 
present a challenge to the player. 

A very large part of the Dragon's BASIC system is 
dedicated to providing graphics facilities and it is 
not an easy task to duplicate those features as 
assembly code routines. Nevertheless, if speed is 
required, some graphics programming must be carried out 
in assembly code but the programmer should, as far as 
possible, make use of BASIC for those parts of his 
program which are not time critical. 

In general, a good graphics programming strategy is 
to develop the complete program using BASIC'S 
facilities and to iron out program bugs at this stage. 
This will probably result in a system which is far too 
slow but you may then replace BASIC routines . with 
assembly code routines to speed up your system. 

It is seldom necessary to duplicate the BASIC 
routines exactly unless they are components of other 
routines. Rather, it is usually possible to make all 
sorts of simplifications and later in the chapter we 
look at how to design, code and animate screen 
patterns. The chapter also discusses, in some detail, 
the Dragon's graphics hardware and describes the 
different graphics modes available to the programmer. 

Firstly however, we describe in general terms, how 
the Dragon's display system is organised. As in most 
personal computer systems, the display system on the 
Dragon is memory-mapped. This means that an area of 
memory is scanned 50 or 60 times per second, depending 
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on the local mains frequency, and the contents of that 
area are translated by special hardware to a standard 
TV signal which may be displayed on a domestic 
television set. 

The machine allocates a 512 byte area of memory for 
an alphanumeric display and it is this area which is 
used to display BASIC program text as it is input, and 
program results as they are output. The Dragon's 
alphanumeric display is organised as 16 lines with 32 
characters per line. We show later that this display 
area can also be used as a low-resolution graphics 
area. This text segment is always allocated at address 
400 in memory so locations 400-5FF are dedicated to the 
alphanumeric display. 

The memory dedicated to graphics, that is, the 
display of pictures rather than text, is organised into 
graphics segments of 512 bytes each. In full graphics 
mode, a minimum of 2 segments must be allocated but 
there is no inherent maximum number of graphics 
segments. Obviously, however, the maximum number of 
such segments is limited by the amount of free memory 
available to the graphics programmer. These graphics 
segments are usually allocated from address 600 
onwards, that is, immediately after the BASIC text 
segment. The BASIC system organises these graphics 
segments into 'pages' of 1536 bytes and a maximum of 8 
pages is available to the BASIC programmer. 

In order to display characters, the display screen 
is considered as a two-dimensional array of 'picture 
elements' or pixels. The more pixels on the screen, the 
finer detail which can be resolved and the Dragon 
compares favourably with other personal computers in 
this respect. The Dragon's display is made up of 256 
horizontal pixels by 192 vertical pixels. The Dragon's 
graphics hardware provides various graphics modes where 
the screen is considered as a matrix of elements. Each 
element is made up of a single pixel at the highest 
resolution or consists of an array of pixels. 
Depending on the resolution chosen, this array can vary 
from 2 by 1 pixels to 12 by 8 pixels. 

In a memory-mapped graphics system, all information 
about a particular screen element must be encoded in 
memory. This means that the pixel settings and colours 
must be held in memory locations so there is a trade­
off between display resolution and the number of 
colours available to the programmer. High-resolution, 
multi-colour displays require a great deal of memory to 
encode the screen information so the Dragon's graphics 
system limits the number of colours available when 
resolution graphics are used. 

7.1 GRAPHICS DISPLAY HARDWARE 

The Dragon's graphics display hardware is made up of 3 
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microchips. Working in combination, these chips extract 
information from the system's memory and display that 
information on a standard television screen. The so-
called 'Video RAM' is the memory area which is devoted 
to the display and the contents of this memory area 
determine what is actually displayed on the user's 
screen. 

The chips making up the graphics system are the 
Video Display generator (VDG - 6847), the Synchronous 
Address Multiplexor (SAM - 6883), and a Peripheral 
Interface Adapter(PIA - 6821). The interconnections of 
these chips is shown in the system block diagram in 
Figure 1.2. In spite of the fact that the names of 
these chips sounds daunting, it is fairly easy for the 
assembly language programmer to control these devices. 
Each of them, and the Video RAM, is described below. 

7.1.1 The VDG chip 
The video display generator (VDG) chip is the main 
component of the Dragon's graphics system. As the name 
suggests, it generates the video signals that are input 
to the user's television set to provide the screen 
display. For those readers with experience in 
electronics, a complete description of this chip is 
provided in Appendix 3. 

However, you do not need experience in electronics 
to understand how to control this chip. All you must 
understand is that the chip has a set of control lines 
which may be in one of two states representing the 
binary values 1 and 0. When a line represents a 1, we 
say that it is HI, when it represents a binary zero, we 
say that the line is LO. Control signals can be 
generated by writing information to specific memory 
addresses. 

The VDG chip determines the graphics capabilities of 
the Dragon and it does so by providing a selection of 
modes of operation. These modes dictate the resolution 
of the display, the number of display colours, the 
actual colours displayed, etc. In all, there are a 
total of 14 different display modes: 

(1) Four alphanumeric modes 

(2) Two Semigraphics modes 

(3) Four colour graphics modes 

(4) Four resolution graphics modes 

The PMODE statement in BASIC allows some of these modes 
to be provided but not all of them are available to the 
BASIC programmer. However, the assembly language 
programmer may use all of the display modes by directly 
configuring the VDG chip. Each of these modes is 
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described in a separate section later in this chapter. 
The VDG chip has eight control lines which are used 

to select the mode of the display. The table below 
shows the function and the names of each of these 
control lines. 

The mode control lines, A/G, INT/EXT, GM0, GM1, GM2, 
and CSS, are connected to the PIA chip as described in 
the following section. The desired mode may be set up 
by setting the appropriate bit pattern in the PIA's 
data register. This causes the appropriate control 
signals for the VDG chip to be generated. 

Although six of the VDG control lines are set up via 
the PIA, there are only five output lines from the PIA 
to the VDG chip. There is no need for six lines as the 
INT/EXT and GM0 input lines share a single PIA output 
line. When GM0 is needed in graphics mode, the value 
of INT/EXT is irrelevant and when the value of INT/EXT 
is actually needed in alphanumeric/Semigraphics mode, 
the value of GM0 is not used. 

The remaining VDG control lines A/S and INV are 
connected to two of the RAM data lines, D6 and D7. 
These lines can therefore be set on a character by 
character basis in the alphanumeric/semigraphic modes. 

The VDG chip has the capability of generating eight 
colours but, when colour graphics modes are used, 
memory restrictions limit the number of colours which 
may be displayed to four. The eight colours are 
therefore separated into two colour sets and the CSS 
control line on the VDG indicates which colour set is 
in use. 

The colours in each colour set are: 

When the memory bits defining an element are set, this 
means that the element is 'on' and it is displayed in 

Control line 
A/G 

A/S 

INT/EXT 

GM0,GM1,GM2 
CSS 
INV 

Function 
Set LO to indicate Alphanumeric 
HI to indicate Graphic mode 
LO to indicate Alphanumeric 
HI to indicate Semigraphic mode 
Selects between internal (LO) 
and external (HI) character 
generator ROM. 
Selects the graphics mode 
Selects between the two colour sets 
Selects between inverse and normal 
video 

Colour set 1 
Green 
Yellow 
Blue 
Red 

Colour set 2 
Buff 
Cyan 

Magenta 
Orange 
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colour. When the associated bits are unset, the 
element is off and is displayed as black. 

7.1.2 The peripheral interface adaptor 
The PIA is an example of a general-purpose programmable 
interface device which is used to interface the M6809 
processor to other devices. We describe the operation 
of the PIA in Chapter 8 as it plays a very important 
role in input/output programming. 

The block diagram of the Dragon in Figure 1.2 shows 
that the system contains two PIA chips. The PIA used to 
control the VDG chip is PIA1 and, by setting the 
appropriate bits in the PIA's B-side peripheral data 
register, control signals for the VDG chip can be 
generated. 

As the M6809 uses memory-mapped addressing, this 
data register is set by writing bit patterns to the 
appropriate memory address. PIA1 is addressed via 
memory locations FF20 through to FF23 with the B-side 
peripheral data register located at location FF22. We 
might therefore set up the VDG inputs as follows: 

LDA <VDG input state> 
STA $FF22 

In fact, only bits 3 to 7 of this register are used to 
set the VDG control lines with bits 0 to 2 used for 
other purposes by the Dragon. The values of these bits 
are irrelevant for graphics programming. The table 
below shows the association of bits in the PIA register 
and VDG control lines. 

7.1.3 The video RAM 
Whilst it is the VDG chip which determines how data is 
displayed on the user's screen, it is the contents of 
the video RAM which specifies what is displayed. 
Remember that the display is made up of 256 by 192 
pixels and the contents of the video RAM determine 
which pixels should be displayed and the colour of 
displayed pixels. 

The VDG continually scans the video RAM and uses the 
data there to build up an image on the screen. 
Therefore, by changing a data byte in the video RAM, 
the programmer can change the pixels in the 
corresponding screen position. The resolution of the 
display is determined by the number of pixels affected 
when a single data byte of video RAM is modified. 

Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

CSS 
GM0 
GM1 
GM2 
A/G 



F0 
F1 
F2 
F3 
F4 
F5 
F6 

FFC6/7 
FFC8/9 
FFCA/B 
FFCC/D 
FFCE/F 
FFD0/1 
FFD2/3 
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7.1.4 The synchronous address multiplexor - SAM 
The SAM chip has been specifically designed to provide 
the necessary control and timing signals for the M6809, 
the VDG chip, and the video RAM. Much of this 
information is of no relevance to the programmer but 
some aspects of the operation of the SAM chip are 
important. We concentrate on these aspects in this 
section rather than describe the SAM chip in detail. 

Three bits in the SAM control register are used to 
set the appropriate display mode. These bits should be 
set to the same value as bits 3-5 in the VDG control 
register. The SAM control register is memory mapped at 
address FFC0 and occupies the address range FFC0 to 
FFDF. As the control register is 16 bits wide, why are 
32 bytes allocated in memory to that register? 

The 16-bit control register maps onto the 32-bit 
range FFC0 to FFDF so that each register bit is 
represented by two memory bytes which have adjacent 
even and odd values. Therefore bit 0 in the control 
register is represented by FFC0/1, bit 1 by FFC2/3, bit 
2 by FFC4/5 etc. In order to clear a particular bit, a 
write operation to the even address is carried out, and 
to set a SAM control register bit you must write to the 
associated odd address. This technique of setting and 
unsetting the control register bits is the reason why 
32 bytes are allocated to a 16-bit register. 

The SAM control register bits which indicate the 
current graphics mode are the bottom three register 
bits termed V0, V1, and V2. These have associated 
addresses FFCO/1, FFC2/3 and FFC4/5. To set up the 
graphics mode required, you must carry out the 
requisite write operations to these addresses. 

As well as these mode control bits, there are seven 
other SAM control register bits (bits F0-F6) which are 
used to indicate the base address in memory of the 
graphics segments used for the video RAM. The table 
below shows the association between these SAM control 
register bits and memory bytes: 

The 7-bit value in the SAM control register is 
multiplied by 512 to compute the base address of the 
graphics segments used. This is the reason why 
graphics segments always have a base address which is a 
multiple of 512 and why they are always 512 bytes long. 

Because the VDG and SAM chips must operate in 
tandem, they are normally set up in the same mode so 



that signal timings, etc. are compatible. If set up in 
different modes, the system will produce garbage except 
when the VDG chip is in alphanumeric mode and the SAM 
chip is in one of the colour graphics modes. In this 
case, extra Semigraphics modes are available and these 
are described in section 7.6. 

7.2 INTEGRATING BASIC AND ASSEMBLY CODE GRAPHICS 

One of the strengths of the BASIC system on the Dragon 
is the graphics facilities provided by Microsoft's 
Extended Color BASIC. These facilities allow complex 
graphics programs to be written with relative ease but, 
as with all BASIC programs, they are relatively slow. 
Using assembly code speeds up the system's graphics 
very considerably but is much less convenient for the 
programmer. The ideal solution is to use the 
convenience of the BASIC facilities when execution 
speed is not important and to program time-critical 
sections of the program in assembly language. 

Typically, those parts of a graphics program which 
are not time critical are the parts involved with 
initialisation and hardware setup. In this section we 
look at some useful BASIC graphics commands and 
describe a BASIC subroutine which will set up the 
graphics system then call an assembly language program 
which actually creates the display. 

Of the many BASIC commands used for high resolution 
graphics, three are of particular importance to the 
assembly language programmer. 

(1) SCREEN type,colourset 
This command is used to specify whether full 
graphics or alphanumeric/Semigraphics mode is to 
be used. For a full graphics mode, type is 1, 
otherwise 0. The colourset parameter is either 1 
or 0 and selects the colour set as defined in 
section 7.1.1. 

(2) PMODE mode,startpage 
This statement selects one of the five graphics 
modes available with Extended Color BASIC and is 
only meaningful if a SCREEN 1, colourset command 
has been issued. The modes available are summar­
ised below: 

The startpage value is used to select the base 

Mode 
0 
1 
2 
3 
4 

Resolution 
128 by 96 
128 by 96 
128 by 192 
128 by 192 
256 by 192 

RAM bytes 
1536 
3072 
3072 
6144 
6144 

Graphics type 
Resolution 
Colour 
Resolution 
Colour 
Resolution 



Page 
1 
2 
3 
4 
5 
6 
7 
8 

RAM address range 
600-BFF 
C00-11FF 
1200-17FF 
1800-1DFF 
1E00-23FF 
2400-29FF 
2A00-2FFF 
3000-35FF 
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address of the graphics display. In Extended 
Color BASIC, the display area is made up of one 
to four pages of 1536 bytes each with up to eight 
pages used for the display. Therefore, the start­
ing page value must lie in the range 1 to 8 with 
page 1 starting at address 600, immediately after 
the text page. The table below shows the rela­
tionship of pages to RAM addresses. 

(3) PCLS c 
This command is used to clear the high-resolution 
display screen to the background colour c, pro­
vided that c is in the available colour set for 
the current mode. If this is not the case, or c 
is omitted, the default background colour is 
used. This is green if colour set 1 is selected 
and buff if colour set 2 is used. 

SCREEN, PMODE and PCLS are useful to the assembly 
language programmer since they can be used to set up a 
graphics display prior to its use in an assembly 
language program. In other words, the use of these 
commands avoids the need to write machine code routines 
to perform similar functions. 

We show how these can be used in the BASIC 
subroutine below. This routine initialises the 
graphics system using SCREEN, PMODE, and PCLS commands 
then calls an assembly language routine at address 
4E21. 

1000 SCREEN 1,0 'Select graphics screen 
1010 PMODE 0,1 'Select graphics mode 
1020 PCLS 'Clear graphics display 
1030 EXEC &H4E21 'Call machine code 
1035 ' Don't return immediately to BASIC 
1036 ' as this means switch to text screen 
1040 IF INKEY$="" THEN 1040 ' and display is lost 
1048 'Switch colour sets and watch 
1049 'screen colours change 
1050 SCREEN 1,1 
1060 IF INKEY$="" THEN 1060 
1070 SCREEN 0,0 'Now revert to text mode 
1080 RETURN 

Program 7.1 BASIC test rig for graphics programs 
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7.3 ALPHANUMERIC DISPLAY MODES 

The alphanumeric mode is the mode adopted by the Dragon 
when it is switched on or reset. In this mode, the 
display is made up of a 32 by 16 matrix of display 
elements with 512 bytes of video RAM dedicated to this 
display. The BASIC system allocates this display area 
at address 400 so that the SAM control register bits 
F0-F6 are set to 02. 

Although the VDG chip supports four different 
alphanumeric modes, the Dragon hardware is only 
designed to make use of one of these. The other modes 
require special read-only memories to be installed and 
attempting to use them will result in unpredictable 
access to RAM. Nevertheless, it is possible to use 
these modes if you are prepared to spend some time in 
experimentation to determine where the VDG accesses 
RAM. The information in the VDG data sheet should be 
sufficient to get you started with these experiments. 

Each character on the display is represented by 8 by 
12 pixels although only 5 by 7 pixels are used to form 
the actual character. The remaining pixels define the 
space between the characters. The shape of the 
characters in alphanumeric mode is determined by a 
read-only memory (ROM) which is build into the VDG 
chip. Unfortunately, this ROM has space for only 64 
characters so this means that the full ASCII character 
set is not available. In particular, lower case 
characters have been excluded and this limits the 
display capabilities of the Dragon. 

As the maximum number of characters which may be 
held in the VDG's ROM is 64, this means that 6 bits of 
an 8-bit byte are required to represent the character 
value. The remaining 2 bits represent the INV and A/S 
control inputs to the VDG chip. One bit specifies 
whether the display mode is alphanumeric or Semigraphic 
and the other specifies whether the character is to be 
displayed in reverse or normal video. The table below 
shows the usage of the bits in an 8-bit data byte: 

One of the problems which arises with this display mode 
is that there is not a one-to-one correspondence 
between the character code in the video RAM byte (which 
is an ASCII character) and the character which is 
actually displayed. To illustrate this, you might like 
to run the following BASIC program: 

5 CLS 
10 FOR K = 0 to 127 
20 K$ = CHR$(K) 
30 POKE &H400 + K,K 

Bits 0-5 
Bit 6 
Bit 7 

Character code 
INV control bit 
A/S control bit 
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40 PRINT @256 + K,K$; 
50 NEXT K 

Program 7.2 Screen character mapping 

The statements at lines 30 and 40 should be equivalent 
in that they should both place the ASCII value of a 
character in the video RAM. However, some characters 
will be displayed differently. 

To further illustrate this point, type in the 
following amendments to the program: 

10 K$=INKEY$: IF K$="" THEN 10 
20 K =ASC(K$) 
50 P1 = PEEK(&H400 +K) 
60 P2 = PEEK(&H400 + 256 + K) 
70 PRINT @480,HEX$(K),HEX$(P1),HEX$(P2); 
80 GOTO 10 

When the program is run, you will see that the actual 
ASCII codes K and P1 remain the same but that P2, the 
result of printing a character, is different. This 
means that the BASIC print routine is altering the 
character code before placing it in the video RAM. 

This conversion is carried out by the standard BASIC 
character printing routine OUTCH. We have already 
mentioned this routine in Chapter 5 and, because it 
takes care of the necessary character conversions for 
the VDG chip, we recommend that it always be used for 
character output. 

OUTCH places the character to be output at the 
current cursor position on the screen. The cursor 
position is held in a system variable called CURADR and 
the contents of that variable determines where, on' the 
screen, the cursor is displayed. Cursor blinking is 
under the control of a system routine called CBLINK and 
the blinking effect is the result of inverting and re-
inverting the cursor position character. 

As well as performing code conversions, the routine 
OUTCH also carries out other screen 'housekeeping' 
duties. It handles screen scrolling when the end of a 
line is reached, deletes characters from the screen 
when the delete key is pressed, and updates the cursor 
position so that the next character input is at that 
position. 

Normally, the Dragon display consists of dark 
characters on a light background. In fact, the 
'normal' character set of the VDG chip consists of 
light characters on a dark background so the Dragon's 
display is actually the inverse character set. This 
means that the INV control bit (bit 6) of each data 
byte must be set to indicate dark-on-light display. To 
illustrate this, the following program manipulates the 
INV bit of every character in the display: 
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LDX #$400 ; Display start address 
NEXTCH LDA ,X ; Character into A 
* INV bit manipulation here - see below 

STA ,X+ ; Put character back 
CMPX #$5FF ; Reached end of screen? 
BLS NEXTCH ; No, repeat 
RTS 

Program 7.3 INV bit manipulation 

The INV bit can be manipulated in the following ways: 

Instruction Effect 
ORA #$40 Sets INV to 1 so 'normalising' the 

display 
ANDA #$BF Clears INV so inverting the display 
EORA #$40 If INV is set, it is unset and vice 

versa. The effect of this is to 
reverse the display 

7.4 COLOUR GRAPHICS DISPLAY MODES 

The VDG provides eight full graphics modes although 
only five of these are directly supported by Extended 
Color BASIC. The modes range from a four-colour 64 by 
64 element display requiring 1024 bytes of video RAM to 
a two-colour 256 by 192 display requiring 6144 bytes of 
video RAM. Four of these modes are termed colour 
graphics modes and these are described in this section. 
Each of these modes is numbered 1, 2, 3 or 6 depending 
on the number of graphics pages required and colour 
graphics modes are indicated by using this number and 
suffixing it with C. 

In any colour graphics mode, the setting of each 
element in the display is controlled by two bits in the 
video RAM byte so that the element may be one of four 
colours. The general format of a video RAM byte for 
colour graphics is shown in Figure 7.1. 

Fig. 7.1 Colour graphics byte format 

Because the VDG is capable of generating eight colours, 
two colour sets each of four colours are available. 
Which colour set is in use is determined by the CSS 
input line to the VDG. The table below shows the 
available colours and their associated coding in the 
video RAM byte. 

c1c0 

E3 

C1C0 

E2 

C1C0 

E1 

C1C0 

E0 
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To illustrate each of the graphics modes available, the 
assembly language routine shown as Program 7.4 
generates a checkerboard pattern on the screen. As 
each graphics mode has different requirements, the 
appropriate constants have been defined using an EQU 
directive so that they may be easily altered for 
another mode. The appropriate equates are defined along 
with the description of each of the graphics modes and 
are initially set up for the colour graphics 1 mode. 

The method used to generate the checkerboard pattern 
is to set up alternating on-off patterns in the video 
RAM byte and then write a complete row of such bytes to 
the screen. After a row has been written, the on-off 
patterns are reversed and another row written. This 
means that an on-pattern falls immediately below an 
off-pattern which is black thus creating the 
checkerboard. 

When in colour graphics mode, two bits are used to 
define each screen location so the appropriate on-off 
pattern in the video RAM byte is 00110011. This is 
encoded, in hexadecimal, as $33. 

DSTART EQU $0600 ; Display start address 
DSIZE EQU 1024 ; Display size 
DEND EQU DSTART+DSIZE ; Display end address 
DWIDTH EQU 16 ; Display width in bytes 
DBITS EQU $33 ; Display bit pattern 

ORG $4E21 ; Set up code address 
PATGEN PSHS A,B,X ; Save registers 

LDX #DSTART ; Set up base address 
LDA #DBITS ; Set up pattern 
LDB #DWIDTH ; Set up width 

NXTCOL STA 0,X+ ; generate pattern 
DECB 
BNE NXTCOL ; are we finished? 
COMA ; yes, complement pattern 
LDB #DWIDTH ; and reset row length 
CMPX #DEND ; Reached end of display 
BLO NXTCOL ; no, do next column 
PULS A,B,X,PC ; restore and return 

Program 7.4 Checkerboard routine 

CSS 
0 
0 
0 
0 
1 
1 
1 
1 

Colour 
Green 
Yellow 
Blue 
Red 
Buff 
Cyan 

Magenta 
Orange 

C1C0 
00 
01 
10 
11 
00 
01 
10 
11 
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7.4.1 The colour graphics 1 mode 
This mode provides a 64 element wide by 64 element high 
four colour graphics display and is referred to as the 
1C mode. As the display screen is 256 by 192 pixels, 
this means that each element is 4 pixels by 3 pixels in 
size. Given that the code for 4 screen elements can be 
held in each byte, the display memory requirement for 
this mode is therefore 1024 bytes. 

The pattern generator program is set up initially in 
this mode. However, as the BASIC PMODE command does not 
recognise this particular mode, the SAM and VDG chips 
have to be set up directly in the BASIC test rig by 
poking values into their control registers. It is still 
possible to use the SCREEN command to select the 
graphics screen since this is independent of the mode. 
It is also possible to use one of the colour graphics 
PMODEs (1 or 3) to set up the start page and PCLS to 
clear the screen graphics display since the byte format 
is the same. This does mean that 3072 (3C) or 
6144 (6C) bytes will be cleared when only 1024 bytes 
need be but this is not usually a problem. 

The following amendments to Program 7.1 configure 
the graphics hardware for the 1C mode. 

1010 PMODE 1,1 
1022 POKE &HFFC1,1 'Set V0 in SAM 
1024 POKE &HFFC2,0 'Clear V1 in SAM 
1026 POKE &HFFC4,0 'Clear V2 in SAM 
1028 POKE &HFF22,&H80 'Configure VDG 

The lines 1022-1028 are used to configure the VDG and 
SAM directly and therefore override the PMODE 1 
command. 

7.4.2 The colour graphics 2 mode 
The display generated by this mode is in four colours 
on a 128 by 64 grid. Elements are made up of 2 by 3 
pixels and a total of 2048 bytes of video RAM is 
required to support this mode. To convert the 
checkerboard generator to this mode, the following 
equates must be made: 

DSIZE EQU 2048 
DWIDTH EQU 32 

Again, the programmer must configure the SAM and VDG 
chips by the use of POKEs to set their control 
registers. The amendments to the BASIC test rig below 
set these devices for this mode. 

1010 PMODE 1,1 
1022 POKE &HFFC0,0 
1024 POKE &HFFC3,1 
1026 POKE &HFFC4,0 
1028 POKE $HFF22,&HA0 'Configure VDG 
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7.4.3 The colour graphics 3 mode 
This mode considers the screen to be made up of 128 by 
96 elements and, like all the colour graphics modes, 
can display up to four colours. The total video RAM 
requirement for this mode is 3072 bytes or two high-
resolution graphics pages. 

To reconfigure the checkerboard program for this 
mode requires the following redefinitions 

DWIDTH EQU 32 
DSIZE EQU 3072 

BASIC recognises this mode so the hardware can be set 
up using a PMODE 1 command. 

7.4.4 The colour graphics 6 mode 
This is the highest resolution colour graphics mode. 
The screen is made up of 128 by 192 elements and there 
are four possible colours. Elements are each 2 by 1 
pixels in size. The memory requirements for this mode 
are 6144 bytes which needs four high-resolution 
graphics pages. 

The following alterations to the pattern generator 
program are needed: 

DSIZE EQU 6144 
DWIDTH EQU 32 

Again, this mode is recognised by BASIC and can be set 
up by using a PMODE 3,1 command. 

7.5 RESOLUTION GRAPHICS DISPLAY MODES 

Resolution graphics, as the name implies, are more 
concerned with screen resolution rather than colour so, 
in these graphics modes, the colours are limited. The 
display is black on a background colour or a foreground 
colour on black. 

The background or foreground colours are green and 
buff as shown in the table below. 

In resolution graphics, each element in the display is 
controlled by a single bit which means that an element 
can be one of two colours. 

The bit pattern used to define the checkerboard 
consists of bits with alternating values, that is, 
01010101, so for all resolution graphics modes the 
DBITS constant in Program 7.4 is set to $55. 

CSS 
0 
0 
1 
1 

Colour 
Black 
Green 
Black 
Buff 

RAM bit value 
0 
1 
0 
1 



c 

E7 

C 

E6 

C 

E5 

C 

E4 

C 

E3 

C 

E2 

C 

E1 

C 

E0 
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The general format of a video RAM byte for 
resolution graphics is shown in Figure 7.2. 

Fig. 7.2 Resolution graphics byte format 

There are four resolution graphics modes which are 
given the names 1R, 2R, 3R and 6R. These are the 
resolution graphics equivalents of modes 1C, 2C, 3C, 
and 6C and each is described below. 

7.5.1 The resolution graphics 1 mode 
This mode generates a 128 element wide by 64 element 
high two-colour graphics display. Each element is 
controlled by a single bit in the video RAM byte and is 
2 pixels by 3 pixels in size. The total memory 
requirements for this mode are 1024 bytes. Like the 1C 
mode, this mode is not supported directly by BASIC. 

The pattern generator can be altered for this mode 
by redefining some of the constants as follows: 

DSIZE EQU 1024 

The BASIC test rig must be modified to set up the VDG 
and SAM chips but a PMODE 0 command followed by a PCLS 
will clear enough screen bytes for this mode. The 
following amendments to the BASIC test rig will 
configure the VDG and SAM chips for the 1R mode. 

1022 POKE &HFFC1,1 'Set V0 in SAM 
1024 POKE &HFFC2,0 'Clear V1 in SAM 
1026 POKE &HFFC4,0 'Clear V2 in SAM 
1028 POKE &HFF22,&H90 'Configure VDG 

7.5.2 The resolution graphics 2 mode 
This resolution graphics mode generates a display of 
128 elements wide by 96 elements high. This means that 
each element is 2 pixels by 2 pixels in shape. Its 
memory requirements are 1536 bytes or 1 high-resolution 
graphics page. 

The checkerboard program may be modified for this 
mode by redefining the equates as follows: 

DSIZE EQU 1536 

The 2R mode is supported by BASIC and can be invoked by 
issuing a PMODE 0 command. 



166 

7.5.3 The resolution graphics 3 mode 
This mode generates a 128 by 192 element display in two 
colours. Each element is 2 pixels by one pixel and the 
total memory requirement is 3072 bytes. 

To reconfigure the pattern generator for this mode 
only requires DSIZE to be equated to 3072. The mode is 
supported by BASIC as PMODE 2. 

7.5.4 The resolution graphics 6 mode 
This is the highest resolution mode possible since each 
pixel is controlled by a single bit in the video RAM. 
The display is arranged as a 256 by 192 pixel grid and 
therefore the video RAM size required for this is 6144 
bytes. To set up the checkerboard routine for this mode 
requires DSIZE to be equated to 6144 and the BASIC test 
rig must be modified so that a PMODE 4 command is 
issued. 

7.6 SEMIGRAPHICS DISPLAY MODES 

As well as graphics and alphanumeric modes, the VDG 
chip has two Semigraphics modes where special-purpose 
characters representing graphics symbols can be built 
up and displayed on the screen. As the fundamental 
display element is the character, it is possible to mix 
these graphics characters with normal alphanumerics 
thus allowing text and graphics to appear together on 
the Dragon's display. Furthermore, the use of a 
Semigraphics mode allows the use of eight-colour rather 
than four-colour graphics, thus opening up more 
creative possibilities for the graphics programmer. 

The in-built Semigraphics modes are termed 
Semigraphics 4 and Semigraphics 6 modes with the 
associated number referring to the number of elements 
making up a graphics character. As well as these in­
built modes, it is also possible to set up three 
additional Semigraphics modes (8, 12, 24) by setting 
the VDG chip in alphanumeric mode and the SAM chip in 
2C, 4C, or 6C colour graphics mode. Details of these 
additional modes are briefly described below and fully 
described in Appendix 2. 

When in Semigraphics mode, each character is made up 
of a number of elements. The character organisation 
for Semigraphics 4 mode is shown as Figure 7.3. The 
other modes have a similar pixel organisation although, 
obviously, they offer higher resolution graphics as 
each character is made up of more elements. In all 
cases, the horizontal width of an element is 4 pixels 
but the vertical width varies from 1 to 6 pixels. Apart 
from the Semigraphics 6 mode, all of the Semigraphics 
modes allow eight-colour graphics and use three bits in 
each byte to represent the colour of the character 
elements represented in that byte. Bits 4-6 in the 
byte hold the colour information and the table below 
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defines the colours associated with each three-bit 
colour value. 

Fig. 7.3 Semigraphics 4 character organisation 

A Semigraphics byte is arranged so that bits 0-3 hold 
the settings of character elements, bits 4-6 hold the 
colour and bit 7 is the mode bit. In Semigraphics 4 
and 6 modes, bit 7 is 1, in Semigraphics 8, 12, or 24 
modes, bit 7 is 0. All elements that are 'on' are 
displayed in the colour specified in bits 4-6 and 
elements which are 'off' are displayed as black. There 
is no way that elements represented in the same byte 
can take different colours. 

7.6.1 The Semigraphics 4 mode 
In Semigraphics 4 mode, each character is split into 4 
elements of size 4 by 6 pixels. A single video RAM 
byte is therefore needed to hold each character where 
bits 0-3 are named L0-L3. 

To experiment with this mode, you might like to 
modify Program 7.2 which manipulates the INV bit in the 
video RAM bytes. Rather than manipulate bit 6, you 
manipulate bit 7 using AND, OR and EOR instructions. 
These will turn the Semigraphic mode on and off. 

7.6.2 Semigraphics 6 mode 
The Semigraphics 6 mode splits each character into 6 
elements of size 4 by 4 pixels giving a display 
resolution of 64 horizontal by 48 vertical elements. 
Each element is controlled by a bit in the video RAM 

Colour 
Green 
Yellow 
Blue 
Red 
Buff 
Cyan 

Magenta 
Orange 

Bit pattern 
000 
001 
010 
011 
100 
101 
110 
111 

4 

L3 

L1 

4 

L2 

LO 

6 

6 
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byte so, as a single byte is used for each character 
position in this mode, six bits of that byte are 
required to encode element settings. This leaves only 
two bits (bits 6 and 7) for colour information so only 
four colours may be represented. As in the colour 
graphics modes, the setting of CSS determines which 
colour set is used. 

In fact, the number of colours available in this 
mode is even more restricted as bit 7 has a double 
function as a colour coding bit and as a mode setting 
bit. In order to remain in Semigraphics mode, bit 7 
must always be set to 1 so this means that only blue 
and red from colour set 0 and magenta and orange from 
colour set 1 may be used. 

7.6.3 The Semigraphics 8 mode 
The Semigraphics 8 mode is the first of the extra 
Semigraphics modes which can be used by setting up the 
VDG chip to alphanumeric mode and the SAM chip to one 
of the colour graphics modes. In this mode, a standard 
8 by 12 pixel character is split into eight elements of 
4 by 3 pixels. 

In order to set up the Semigraphics 8 mode from 
BASIC you must issue a SCREEN 0,0 command to put the 
VDG chip into alphanumeric mode then poke the bit value 
Oil into the SAM control bytes as shown in the graphics 
examples above. 

In this mode, 4 bytes of video RAM are required to 
represent each character position and only the bottom 
two bits (LO and L1) are used to hold element settings. 
As before, bits 4-6 hold the colour value and bit 7 
should be set to indicate Semigraphic mode. Bits 2 and 
3 are not used but should be set so that bit 2 has the 
same value as bit 0 and bit 3 is the same as bit 1. 

Each character is built up as 4 rows of 4 by 3 pixel 
elements. However, the bytes representing these rows 
are not contiguous but are actually spaced 32 bytes 
apart. The reason for this is that the SAM chip is 
configured to a colour graphics mode where the image is 
built up row by row, with each complete row taking up 
32 bytes. As Semigraphic elements consist of a number 
of rows, this means that the bytes specifying the 
element must be set up at this spacing. 

As four bytes are used, it is possible to mix 
element colours when using this mode as, obviously, 
each pair of elements in a byte has its own colour 
information. Furthermore, it also allows character 
rows from different characters to be incorporated into 
new characters and symbols. This means you can provide 
facilities such as character underlining by switching 
to Semigraphics mode at the appropriate time. 

However, using this facility requires great care as 
you must build up each character individually with each 
row of elements defined in a separate byte. You also 
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have the problem of spacing character definition bytes 
32 bytes apart as explained above so we recommend that 
you write a program to help you organise byte layout if 
you wish to use this facility. 

7.6.4 The Semigraphics 12 mode 
In this mode, the VDG chip is set to alphanumeric mode 
and the SAM chip to colour graphics 4C mode. Each 
character element is represented by twelve 4 by 2 pixel 
elements held in six bytes. As in the Semigraphics 4 
mode, only the bottom two bits per byte are used for 
element settings and different bytes may be set to 
different colours. 

To set up this mode, you must issue a SCREEN 0,0 
command from BASIC then poke the value 001 into the SAM 
control bytes. 

7.6.5 The Semigraphics 24 mode 
In this mode, the SAM chip is set up to 6C mode and 
each character element is made up of twenty four 4 by 1 
pixel elements thus giving a screen resolution of 64 by 
192 elements. A total of 12 bytes is required to hold 
these element settings and, again, the colour of the 
two elements represented in each byte may be set up 
independently. 

To set up this mode, you must issue a SCREEN 0,0 
command from BASIC then poke the value 011 into the SAM 
control bytes. 

7.7 GRAPHICS UTILITIES 

So far we have shown how the various display modes can 
be set up from BASIC and we have assumed that this is 
carried out before an assembly code graphics routine is 
called. Sometimes, setting up the display hardware 
from BASIC is neither possible nor desirable so in this 
section we describe how BASIC commands such as SCREEN, 
PMODE, PCLS, etc. may be implemented in assembly 
language. 

We have described, in section 7.1, the various 
hardware control bits and have explained that they are 
set up via memory-mapped I/O addresses. Remembering 
which bit means what is difficult, so it is good 
practice to set up mnemonic names for the various 
control bit settings. A table of equates defining 
these names, which we use throughout the remainder of 
this chapter, is shown below. 

* VDG/PIA and SAM addresses 
* 
VDGPIA EQU $FF22 ; Port B of PEA - VDG control 
SAMVOC EQU $FFC0 ; Used to clear V0 
SAMV0S EQU $FFC1 ; Used to set V0 
SAMV1C EQU $FFC2 ; Used to clear V1 
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SAMV1S EQU $FFC3 ; Used to set V1 
SAMV2C EQU $FFC4 ; Used to clear V2 
SAMV2S EQU $FFC5 ; Used to set V2 
SAMF0C EQU $FFC6 ; Base address of F0-F6 
* 
* VDG/PIA bit patterns - assumes CSS=0 
* 
ALPHAI EQU $00 ; Internal alphanumeric 
ALPHAE EQU $10 ; External alphanumeric 
M0DES4 EQU ALPHAI ; Semigraphics 4 
M0DES6 EQU ALPHAE ; Semigraphics 6 
MODES8 EQU MODES4 ; Semigraphics 8 
MODS12 EQU MODES4 ; Semigraphics 12 
M0DS24 EQU M0DES4 ; Semigraphics 24 
* 
* Full graphics modes 
* 
M0DE1C EQU $80 ; Graphics 1C 
MODE1R EQU $90 ; Graphics 1R 
MODE2C EQU $A0 ; Graphics 2C 
MODE2R EQU $B0 ; Graphics 2R 
MODE3C EQU $C0 ; Graphics 3C 
MODE3R EQU $D0 ; Graphics 3R 
MODE6C EQU $E0 ; Graphics 6C 
MODE6R EQU $F0 ; Graphics 6R 

Normally, the modes of the VDG and the SAM chip are the 
same but for some of the extra Semigraphics modes they 
must be set up differently. Therefore, rather than use 
a single routine with complex parameters to set up 
these devices, it is better to use two separate 
routines. The routine to configure the VDG chip is 
called VDGMOD and the routine to configure the SAM chip 
is SAMMOD. They are shown below as Program 7.5. 

* VDGMOD - sets up VDG chip 

* Sets control lines A/G, GM0-2, and CSS 
* 
* Register input A - configuration bit pattern 
* to be written to PIA 
* Note only bits 3-7 of PIA are set so bits 0-2 must 
* be preserved 
* 
VDGMOD PSHS A ; Preserve setup pattern 

LDA VDGPIA ; Preserve bottom bits 
ANDA #7 ; of PIA register 
ORA ,S ; Or in setup pattern 
STA VDGPIA ; Setup VDG 
PULS A,PC ; Restore and return 

* 
* SAMMOD - Setup SAM chip 
* 
* Register input A - bit pattern used to set up VDG 
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* In general, V0,V1,V2 in SAM are set up as GM0, 1, 2 
* in VDG but there are three special cases: 
* If A/G = 0 then V0V1V2 = 000 
* If A/G = 1 and GM0GM1GM2 = 000 then V0V1V2 = 100 
* If A/G = 1 and GM0GM1GM2 = 111 then V0V1V2 = 01l 

SAMMOD PSHS A ; Preserve VDG pattern 
STA SAMVOC ; Clear V0 
STA SAMV1C ; Clear V1 
STA SAMV2C ; Clear V2 
ANDA #$F0 ; Clear bottom 4 bits of A 
BPL NOTGM0 ; Text mode (B7=0) 
CMPA #MODE1C ; no, is it 1C? 
BNE NOT1C 
ORA #$10 ; yes, special case->lR 

NOT1C CMPA #MODE6R ; Is it 6R 
BNE NOT6R 
ANDA #$E0 ; yes, special case->6C 

NOT6R ROLA ; Get rid of A/G bit 
BPL NOTGM2 ; GM2 set? 
STA SAMV2S ; yes, set V2 

NOTGM2 ROLA ; get rid of GM2 bit 
BPL NOTGMl ; GM1 set 
STA SAMV1S ; yes, set V1 

NOTGMl ROLA ; get rid of GM1 bit 
BPL NOTGM0 ; GM0 set? 
STA SAMV0S ; yes, set V0 

NOTGM0 PULS A,PC ; Restore and return 

Program 7.5 VDG and SAM setup routines 

These routines set up the SAM and VDG chips. Normally, 
these devices are configured in the same mode so the 
bit pattern defining the VDG's control bits is set up 
in register A and each routine is called in turn. 

* GMODE - sets up graphics hardware 

* Register input A - VDG's control bit settings 
* 
GMODE BSR VDGMOD 

BSR SAMMOD 
RTS 

You can use this routine in conjunction with the equate 
table defined above to set up any of the graphics 
modes. You simply have to load the A register with the 
mode required then call GMODE to configure the VDG and 
SAM chips. The exceptions to this are when Semigraphics 
8, 12, or 24 modes are to be set up when VDGMOD and 
SAMMOD must be called individually to configure the VDG 
and SAM chips to different modes. 

For example: 




